Anti-virulence activities of some Tillandsia species (Bromeliaceae)

keywords: Anti-biofilm, anti-virulence, bromeliads, quorum quenching, Tillandsia

Abstract

Background: Using molecules that inhibit bacterial virulence is a potential strategy to fight infections, with the advantage that, in contrast to bactericidal compounds, they do not induce resistance. Several compounds with anti-virulence properties have been identified in plants, however, they represent a small portion of the total diversity, and in Mexico there are still few studies on this matter. 

Hypothesis: Extracts of species of the Tillandsia genus inhibit the expression of diverse virulence factors without affecting the bacterial growth. 

Studied species: Tillandsia recurvata (L.) L., T. schiedeana Steud. and T. fasciculata Sw. 

Study site and date: These species were collected in December 2016 in the municipalities of Ixtlahuaca and Santo Tomás de los Plátanos, State of Mexico.

Methods: The ability of dichloromethane (CH2Cl2) and methanol (CH3OH) extracts to inhibit production of violacein in Chromobacterium violaceum was evaluated, as well as the virulence factors regulated by quorum sensing, motility and biofilm in Pseudomonas aeruginosa. In addition, the bioactive fractions obtained were partially identified by 1H NMR.

Results: CH2Cl2 and CH3OH extracts reduced violacein production from 43 to 85 %, but only those from CH2Cl2 reduced protease activity, biofilm formation and swarming. Interestingly, CH3OH extracts stimulated the formation of biofilms by up to 37 %. Presence of terpenes and phenolic compounds in these species was confirmed. In T. schiedeana glycosylated compounds and cycloartane-type triterpenes were identified.

Conclusion: The species of Tillandsia show anti-virulence activity, mainly on factors related to adhesion and dispersion in Pseudomonas aeruginosa.

Downloads

Download data is not yet available.

Author Biographies

Macrina Pérez-López, Colegio de Postgraduados. Campus Montecillo

Posgrado de Botánica. Maestra en ciencias. Candidata al grado de doctor

María Flores-Cruz, Universidad Autónoma Metropolitana, Unidad Iztapalapa

Profesora Titular, Universidad Autónoma Metropolitana Unidad Iztapalapa

CoordinadoraNacional de la Red-Bromelias-SAGARPA-SNICS-SINAREFI

Mariano Martínez-Vázquez, Universidad Nacional Autónoma de México

Departamento de productos naturales, Instituto de Química

Marcos Soto-Hernández, Colegio de Postgraduados. Campus Montecillo

Posgrado de Botánica. Profesor investigador titular

Rodolfo García-Contreras, Universidad Nacional Autónoma de México

Facultad de Medicina, Departamento de Microbiología y Parasitología. Investigador titular. Universidad Nacional Autónoma de México

Daniel Padilla-Chacón, Colegio de Postgraduados, Campus Montecillo

Posgrado de Botánica,

Israel Castillo-Juárez, Colegio de Postgraduados. Campus Montecillo

Posgrado de Botánica. Doctor. Catedrático Conacyt

 

Anti-virulence activities of some <em>Tillandsia</em> species (Bromeliaceae)

References

Adonizio AL, Downum K, Bennett BC, Mathee K. 2006. Anti-quorum sensing activity of medicinal plants in southern Florida. Journal of Ethnopharmacology 105: 427–435. DOI: 10.1016/J.JEP.2005.11.025.

Ahmad A, Viljoen AM, Chenia HY. 2015. The impact of plant volatiles on bacterial quorum sensing. Letters in Applied Microbiology 60: 8–19. DOI: 10.1111/lam.12343.

Benzing DH. 2000. Bromeliaceae: Profile of an Adaptive Radiation. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511565175.

Bérdy J. 2012. Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics 65: 385–395. DOI: 10.1038/ja.2012.27.

Castillo-Juarez I, Lopez-Jacome LE, Soberon-Chavez G, Tomas M, Lee J, Castaneda-Tamez P, Hernandez-Barragan IA, Cruz-Muniz M, Maeda T, Wood TK, Garcia-Contreras R. 2017. Exploiting quorum sensing ihibition for the control of Pseudomonas aeruginosa and Acinetobacter baumannii biofilms. Current Topics in Medicinal Chemistry 17: 1915–1927. DOI: 10.2174/1568026617666170105144104.

Castillo-Juárez I, González V, Jaime-Aguilar H, Martínez G, Linares E, Bye R, Romero I. 2009. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Journal of Ethnopharmacology 122: 402–205. DOI: 10.1016/j.jep.2008.12.021.

Castillo-Juárez I, García-Contreras R, Velázquez-Guadarrama N, Soto-Hernández M, Martínez-Vázquez M. 2013. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Archives of Medical Research 44: 488–494. DOI: 10.1016/j.arcmed.2013.10.004.

Chandra H, Bishnoi P, Yadav A, Patni B, Mishra A, Nautiyal A. 2017. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—A review. Plants 6: 16. DOI: 10.3390/plants6020016.

de Lima-Saraiva SRG, Silva JC, Branco CR, Branco A, Cavalcanti Amorim EL, da Silva Almeida JR. 2014. Antinociceptive effect of Encholirium spectabile: a Bromeliaceae from the Brazilian caatinga biome. Pharmacognosy Magazine 10: S655–S660. DOI: 10.4103/0973-1296.139817.

de Oca-Mejía MM, Castillo-Juárez I, Martínez-Vázquez M, Soto-Hernandez M, García-Contreras R. 2015. Influence of quorum sensing in multiple phenotypes of the bacterial pathogen Chromobacterium violaceum. Pathogens and Disease 73: 1–4. DOI: 10.1093/femspd/ftu019.

de Oliveira-Júnior RG, Ferraz CAA, Souza GR, Guimarães AL, de Oliveira AP, de Lima-Saraiva SRG, Rolim LA, Rolim-Neto PJ, da Silva Almeida JRG. 2017. Phytochemical analysis and evaluation of antioxidant and photoprotective activities of extracts from flowers of Bromelia laciniosa (Bromeliaceae). Biotechnology and Biotechnological Equipment 31: 600–605. DOI: 10.1080/13102818.2017.1288073.

Estrella-Parra E, Flores-Cruz M, Blancas-Flores G, Koch SD, Alarcón-Aguilar FJ. 2019. The Tillandsia genus: history, uses, chemistry, and biological activity. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 18: 239–264.

Faller EM, Kanes SN, Zajmi A, Ramli MD. 2017. In vitro antibacterial activity of spanish moss (Tillandsia usneoides) crude extract against skin infection in wound healing. International Journal of Pharmacognosy and Phytochemical Research 9: 1344–1352. DOI: 10.25258/phyto.v9i10.10459.

Ferri M, Ranucci E, Romagnoli P, Giaccone V. 2017. Antimicrobial resistance: a global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition 57: 2857–2876. DOI: 10.1080/10408398.2015.1077192.

García-Contreras R. 2016. Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections? Frontiers in Microbiology 7: 1454. DOI: 10.3389/fmicb.2016.01454.

García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA, González-Valdez A, Sobe?on-Chávez G, Coria-Jiménez R, Martínez-Vázquez M, Alcaraz LD, Maeda T, Wood TK. 2015. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathogens and Disease 73: ftv040. DOI: 10.1093/femspd/ftv040.

Guendouze A, Plener L, Bzdrenga J, Jacquet P, Rémy B, Elias M, Lavigne JP, Daudé D, Chabrière E. 2017. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Frontiers in Microbiology 8: 227. DOI: 10.3389/fmicb.2017.00227.

Ha DG, Kuchma SL, O’Toole GA. 2014. Plate-based assay for swarming motility in Pseudomonas aeruginosa. In: Filloux Alain, and Ramos JL, eds. Pseudomonas Methods and Protocols. New York, NY: Springer New York, 67–72. DOI: 10.1007/978-1-4939-0473-0_8.

Köhler T, Curty LK, Barja F, van Delden C, Pechère J-C. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology 182: 5990–5996. DOI: 10.1128/JB.182.21.5990-5996.2000.

Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein and Cell 6: 26–41. DOI: 10.1007/s13238-014-0100-x.

López-Jácome E, Franco-Cendejas R, Quezada H, Morales-Espinosa R, Castillo-Juárez I, González-Pedrajo B, Fernández-Presas AM, Tovar-García A, Angarita-Zapata V, Licona-Limón P, Martínez-Vázquez M, García-Contreras R. 2019. The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Current Opinion in Pharmacology 48: 48–56. DOI: 10.1016/j.coph.2019.04.016.

Lowe HIC, Toyang NJ, Watson CT, Ayeah KN, Bryant J. 2017. HLBT-100: A highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L. Cancer Cell International 17: 38. DOI: 10.1186/s12935-017-0404-z.

Luther HE. 2014. An Alphabetical List of Bromeliad Binomials. Holst BK, ed. Bromeliad Society International. <https://www.bsi.org/new/wp-content/uploads/2015/01/2014-Binomial-XIV.pdf> (Acceso diciembre 3, 2018)

Machado FDF, Silva F V, Fernandes HB, Freitas FFBP, Arcanjo DDR, Lima JT, Almeida JRGS, Oliveira FA, Oliveira RCM. 2013. Gastroprotective effect of an ethanolic extract from Neoglaziovia variegata (Arruda) Mez (Bromeliaceae) in rats and mice. Zeitschrift fur Naturforschung C 68: 97–107. DOI: 10.1515/znc-2013-3-404.

Manetti LM, Delaporte RH, Laverde Jr. A. 2009. Metabólitos secundários da família Bromeliaceae. Química Nova 32: 1885–1897. DOI: 10.1590/S0100-40422009000700035.

McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P. 1997. Quorum sensing and Chrornobacteriurn violaceurn: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703–3711. DOI: 10.1099/00221287-143-12-3703.

Mondragón-Chaparro DM, Ramírez-Morillo IM, Flores-Cruz M, García-Franco JG. 2011. La Familia Bromeliaceae En México. Primera edición. México: Universidad Autónoma Chapingo.

Mühlen S, Dersch P. 2016. Anti-Virulence Strategies to Target Bacterial Infections. In: Stadler M, Dersch P, eds. Current Topics in Microbiology and Immunology. Cham: Springer, 147-183. DOI: 10.1007/82_2015_490.

Muñoz-Cazares N, García-Contreras R, Pérez-López M, Castillo-Juárez I. 2017. Phenolic compounds with anti-virulence properties. In: Soto-Hernández M, Palma-Tenango M, García-Mateos MR, eds. Phenolic Compounds - Biological Activity.139–167. DOI: 10.5772/66367.

Muñoz-Cazares N, García-Contreras R, Soto-Hernández M, Martínez-Vázquez M, Castillo-Juárez I. 2018. Natural products with quorum quenching-independent antivirulence properties. In: Studies in Natural Products Chemistry. Elsevier B.V., 327–351. DOI: 10.1016/B978-0-444-64057-4.00010-7.

Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian SK. 2010. Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the n-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 56: 333–339. DOI: 10.1159/000320185.

Plyuta V, Zaitseva J, Lobakova E, Zagoskina N, Kuznetsov A, Khmel I. 2013. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS 121: 1073–1081. DOI: 10.1111/apm.12083.

Sandoval-Bucio EN, Flores-Cruz M, Martínez-Bernal A. 2004. Bromelias útiles de México. Cactáceas y Suculentas Mexicanas 49: 100–115.

Silva ACO, Santana EF, Saraiva AM, Coutinho FN, Castro RHA, Pisciottano MNC, Amorim ELC, Albuquerque UP. 2013. Which approach is more effective in the selection of plants with antimicrobial activity? Evidence-based Complementary and Alternative Medicine 2013: 9. DOI: 10.1155/2013/308980.

Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chemical Reviews 116: 9162–9236. DOI: 10.1021/acs.chemrev.6b00184.

Stepek G, Buttle DJ, Duce IR, Lowe A, Behnke JM. 2005. Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology 130: 203–211. DOI: 10.1017/S0031182004006225.

Ta CAK, Arnason JT. 2015. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 21: E29. DOI: 10.3390/molecules21010029.

Tillotson GS, Theriault N. 2013. New and alternative approaches to tackling antibiotic resistance. F1000Prime Reports 5. DOI: 10.12703/P5-51.

Varposhti M, Ali AA, Mohammadi P, Saboora A. 2013. Effects of extracts and an essential oil from some medicinal plants against biofilm formation of Pseudomonas aeruginosa. Journal of Medical Microbiology and Infectious Diseases 1: 36–40.

Vite-Posadas JA, Brechú-Franco AE, Laguna-Hernández G, Rojas-Bribiesca MG, Osuna-Fernández HR. 2011. Morphoanatomical characterization and antimicrobial activity of Tillandsia imperialis (Bromeliaceae). Polibotánica 31: 20–29.

Witherup KM, McLaughlin JL, Judd RL, Ziegler MH, Medon PJ, Keller WJ. 1995. Identification of 3-hydroxy-3-methylglutaric acid (HMG) as a hypoglycemic principle of spanish moss (Tillandsia usneoides). Journal of Natural Products 58: 1285–1290. DOI: 10.1021/np50122a023.

Published
2020-03-11
How to Cite
Pérez-López, M., Flores-Cruz, M., Martínez-Vázquez, M., Soto Hernández, R. M., García-Contreras, R., Padilla-Chacón, D., & Castillo-Juárez, I. (2020). Anti-virulence activities of some Tillandsia species (Bromeliaceae). Botanical Sciences, 98(1), 117-127. https://doi.org/10.17129/botsci.2380
Section
ETHNOBOTANY / ETNOBOTÁNICA