Actividad cambial y cribo-xilogenesis de tres especies en un gradiente altitudinal en la Sierra Nevada, México

Abstract

Antecedentes: Xilema y floema secundarios son derivados del cambium vascular y su dinámica (cribo-xilogénesis) se ha estudiado en coníferas y dicotiledóneas que crecen en un mismo sitio. Estudios que evalúen la cribo-xilogénesis en especies de amplia distribución altitudinal y con diferentes formas de vida son escasos.

Pregunta: ¿existen diferencias en la actividad cambial y cribo-xilogénesis entre especies con distintas formas de vida y distribución diferencial en un gradiente altitudinal?

Especies de estudio: Alchemilla procumbens, Acaena elongata y Ribes ciliatum.

Sitio de estudio y fechas: Cerro Tláloc, Sierra Nevada, Estado de México, México, de 2015 a 2017.

Métodos: Se recolectaron ramas durante 24 meses por especie por sitio y los tejidos se procesaron a través de la técnica de inclusión en metilcrilato.

Resultados: Las tres especies pueden diferenciar el floema antes que el xilema, ser simultánea en ambos tejidos (Alchemilla) o el floema ser no conductor antes de finalizar la xilogénesis (Acaena). Los periodos de actividad cambial y de cribo-xilogénesis fueron más largos (17 semanas) en Acaena (hemicriptófita) y Ribes (fanerófita), mientras que en Alchemilla (criptófita) fueron más cortos pero intermitentes a lo largo del año y ambos se redujeron aún más con el incremento en la altitud.

Conclusiones: La actividad cambial y la xilogénesis entre individuos de diferentes altitudes sugieren que ambos son plásticos y que responden a factores ambientales de cada sitio. En las tres especies, la cribogénesis es menos variable que la xilogénesis como se ha registrado en otras especies. La respuesta rápida de cambium vascular en Alchemilla sugiere que aprovecha los pulsos de factores ambientales beneficiosos para la cribo-xilogénesis.

Downloads

Download data is not yet available.
Actividad cambial y cribo-xilogenesis de tres especies en un gradiente altitudinal en la Sierra Nevada, México

References

Alfieri FJ, Evert RF. 1968. Seasonal development of secondary phloem in Pinus. American Journal of Botany 55: 518-528. DOI: https://doi.org/10.1002/j.1537-2197.1968.tb07407.x

Aljaro ME, Ávila G, Hoffman A, Kummerow J. 1972. The annual rhythm of cambial activity in two Woody species of the Chilean “matorral”. American Journal of Botany 59: 879-885. DOI: DOI: https://doi.org/10.1002/j.1537-2197.1972.tb10163.x

Antonova GF, Stasova VV. 2006. Seasonal development of phloem in Scots pine stems. Russian Journal of Developmental Biology 37: 306-320. DOI: https://doi.org/10.1134/S1062360406050043

Ávila G, Aljaro ME, Araya S, Montenegro G, Kummerow J. 1975. The seasonal cambium activity of Chilean and Californian shrubs. American Journal of Botany 62: 473-478. DOI: https://doi.org/10.1002/j.1537-2197.1975.tb14072.x

Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. 2007. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata). Annals of Botany 100: 439-44. DOI: https://doi.org/10.1093/aob/mcm130

Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. 2013. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiologia Plantarum 147: 46-54. DOI: https://doi.org/10.1111/j.1399-3054.2012.01663.x

Begum S, Nakaba S, Bayramzadeh V, Oribe Y, Kubo T, Funada R. 2008. Temperature responses of cambial reactivation and xylem differentiation in hybrid poplar (Populus sieboldii × P. grandidentata) under natural conditions. Tree Physiology 28: 1813-1819. DOI: https://doi.org/10.1093/treephys/28.12.1813

Cuny H, Rathgeber CBK. 2016. Xylogenesis: coniferous trees of temperate forests are listening to the climate tale during the growing season but only remember the last words! Plant Physiology 171: 306-317. DOI: https://doi.org/10.1104/pp.16.00037

De Mico V, Carrer M, Rathgeber CBK, Camarero JJ, Voltas J, Cherubini, Battipaglia G. 2019. From xylogenesis to tree rings: Wood traits to investigate tree response to environmental changes. IAWA Journal 40: 155-182. DOI: https://doi.org/10.1163/22941932-40190246

Deslauriers A, Morin H, Begin Y. 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Canadian Journal of Forest Research 33: 190-200. DOI: https://doi.org/10.1139/x02-178

Deslauriers A, Rossi S, Anfodillo T, Saracino A. 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in Southern Italy. Tree Physiology 28: 863-871. DOI: https://doi.org/10.1093/treephys/28.6.863

Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L. 2009. Intra annual cambial activity and carbon availability in stem of poplar. Tree Physiology 29: 1223-1235. DOI: https://doi.org/10.1093/treephys/tpp061

Dickson A, Nanayakkara B, Sellier D, Meason D, Donaldson L, Brownlie R. 2017. Flourescence imaging of cambial zone to study wood formation in Pinus radiata D. Don. Trees 31: 479-490. DOI: https://doi.org/10.1007/s00468-016-1469-3

Esau K. 1977. Anatomy of seed plants. New York: John Wiley y Sons. ISBN-10: 0471245208; ISBN-13: 978-0471245209

Evert RF. 2006. Esau’s plant anatomy meristems, cells, and tissues of the plant body: their structure, function, and development. New Jersey: John Wiley y Sons. ISBN-10: 0471738433; ISBN-13: 978-0471738435

Golinowski WO. 1971. The anatomical structure of the common fir (Abies alba Mill.) Bark. 1. Development of bark tissues. Acta Societatis Botanicorum Poloniae 40: 149-181. DOI: https://doi.org/10.5586/asbp.1971.010

Gričar J, Čufar K. 2008. Seasonal dynamics of phloem and xylem formation in silver fir and norway spruce as affected by drought. Russian Journal of Plant Physiology 55: 538-543. DOI: https://doi.org/10.1134/S102144370804016X

Gričar J, Krže L, Čufar K. 2009. Number of cells in xylem, phloem and dormant cambium in silver fir (Abies alba), in trees of different vitality. IAWA Journal 30: 121-133. DOI: https://doi.org/10.1163/22941932-90000208

Gričar J, Zupančič M, Čufar K, Oven P. 2007. Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Science and Technology 41: 463-475. DOI: https://doi.org/10.1007/s00226-006-0109-2

Gričar J, Prislan P, Gryc V, Vavrčík H, De Luis M, Čufar K. 2014. Plastic and locally phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology 34: 869-881. DOI: https://doi.org/10.1093/treephys/tpu026

Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P. 2006. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Annals of Botany 97: 943-951. DOI: https://doi.org/10.1093/aob/mcl050

Gričar J, Prislan P, De Luis M, Gryc V, Hacurova J, Vavrčík H, Čufar K. 2015. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Frontiers in Plant Science 6: 730. DOI: https://doi.org/10.3389/fpls.2015.00730

Güney A. Kerr D, Sökücü A, Zimmermann R, Küppers M. 2015. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Botanical Studies 56: 20. DOI: https://doi.org/10.1186/s40529-015-0100-z

Hou HW, Zhou YT, Mwange KN, Li WF, He XQ, Cui KM. 2006. ABPI expression regulated by IAA and ABA is associated with the cambium periodicity in Eucommia ulmoides Oliv. Journal of Experimental Botany 57: 3857-3867. DOI: https://doi.org/10.1093/jxb/erl150

Iqbal M. 1990. The vascular cambium. New York: John Wiley y Sons. ISBN-10: 0471926477; ISBN-13: 978-0471926474

Jiménez-Noriega MS. 2018. Fenología, actividad cambial y aspectos fisiológicos de tres especies a lo largo de una gradiente altitudinal en el norte de la Sierra Nevada, México. PhD Thesis. Colegio de Postgraduados. México.

Jiménez-Noriega MS, Terrazas T, López-Mata L, Sánchez-González A, Vibrans H. 2017. Anatomical variation of five plant species along an elevation gradient in Mexico City basin within the Trans-Mexican Volcanic Belt, Mexico. Journal of Mountain Forest 14: 2182-2199. DOI: https://doi.org/10.1007/s11629-017-4442-8

Kutscha NP, Hyland F, Schwarzmann JM. 1975. Certain seasonal changes in Balsam fir cambium and its derivatives. Wood Science Technology 9: 175-188. DOI: https://doi.org/10.1007/BF00364636

Larson PR. 1994. The vascular cambium: development and structure. New York: Springer. ISBN-10: 3540571655; ISBN-13: 978-3540571650

Li X, Rossi S, Liang E, Camarero JJ. 2016. Temperature thresholds for the onset of xylogenesis in alpine shrubs on the Tibetan Plateu. Trees 30: 2091-2099. DOI: https://doi.org/10.1007/s00468-016-1436-z

Liang E, Eckstein D, Shao X. 2009. Seasonal cambial activity of relict Chinese pine at the northern of its natural distribution in North China, exploratory results. IAWA Journal 30: 371-378. DOI: https://doi.org/10.1163/22941932-90000225

Marcati CR, Dias-Milanez CR, Rodrígues-Machado S. 2008. Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake Leguminosae: Caesalpinioideae). Trees 22: 3-12. DOI: https://doi.org/10.1007/s00468-007-0173-8

Oribe Y, Funada R, Kubo T. 2003. Relationship between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees 17: 185-192. DOI: https://doi.org/10.1007/s00468-002-0231-1

Oribe Y, Funada R, Shibagaki M, Kubo T. 2001. Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212: 684-691. DOI: https://doi.org/10.1007/s004250000430

Polák T, Rock BN, Campbell PE, Soukupová J, Šolcová B, Zvará K, Albrechtová J. 2006. Shoot growth processes, assessed by bud development types, reflect Norway spruce vitality and sink prioritization. Forest Ecology and Management 225: 337-348. DOI: https://doi.org/10.1016/j.foreco.2006.01.027

Plomion C, Leprovost G, Stokes A. 2001. Wood formation in trees. Plant Physiology 127: 1513-1523. DOI: https://doi.org/10.1104/pp.010816

Prislan P, Gričar J, De Luis M, Smith K.T, Čufar K. 2013. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 180: 142-151. DOI: https://doi.org/10.1016/j.agrformet.2013.06.001

Raunkiaer C.1934. The life forms of plants and statistical plant geography. Oxford: Oxford University Press.

Rossi S, Deslauriers A, Anfodillo T. 2006a. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the Alpine timberline. IAWA Journal 27: 383-394. DOI: https://doi.org/10.1163/22941932-90000161

Rossi S. Deslauriers A, Anfodillo T, Carraro V. 2007. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152: 1-12. DOI: https://doi.org/10.1007/s00442-006-0625-7

Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M. 2006b. Conifers in cold environments synchronize maximum growth rate of tree ring formation with day length. New Phytologist 170: 301-310. DOI: https://doi.org/10.1111/j.1469-8137.2006.01660.x

Ruzin SE. 1999. Plant microtechnique and microscopy. Oxford: Oxford University Press. ISBN-10: 0195089561; ISBN-13: 978-0195089561

Seo JW, Eckstein D, Jalkanen R, Rickebusch S, Schmitt U. 2008. Estimating the onset of cambial activity in Scots pine in northern Finland by means of the heat-sum approach. Tree Physiology 28: 105-112. DOI: https://doi.org/10.1093/treephys/28.1.105

Swidrak I, Gruber A, Oberhuber W. 2014. Xylem and phloem phenology in occurring conifers exposed to drought. Trees 28: 1161-1171. DOI: https://doi.org/10.1007/s00468-014-1026-x

Taiz L, Zeiger E. 2010. Plant physiology. Massachusetts: Sinauer Associates.

Thibeault-Martel M, Krause C, Morin H, Rossi S. 2008. Cambial activity and intra annual xylem formation in roots and stems of Abies balsamea and Picea mariana. Annals of Botany 102: 667-674. DOI: https://doi.org/10.1093/aob/mcn146

Treml V, Kašpar J, Kuželová H, Grye V. 2015. Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees 29: 515-526. DOI: https://doi.org/10.1007/s00468-014-1129-4

Wilson BF. 1966. Mitotic activity in the cambial zone of Pinus strobus. American Journal of Botany 53: 364-372. DOI: https://doi.org/10.1002/j.1537-2197.1966.tb07348.x

Zarlavsky GE. 2014. Histología vegetal. Técnicas simples y complejas. Buenos Aires: Sociedad Argentina de Botánica. ISBN: 9789874548504

Published
2019-12-19
How to Cite
Jiménez-Noriega, M. S., López-mata, L., Aguilar-Rodríguez, S., & Terrazas, T. (2019). Actividad cambial y cribo-xilogenesis de tres especies en un gradiente altitudinal en la Sierra Nevada, México. Botanical Sciences, 97(4), 725-740. https://doi.org/10.17129/botsci.2336
Section
STRUCTURAL BOTANY / BOTÁNICA ESTRUCTURAL