Biodiversity relationships in three structural components in a beech forest of Fagus grandifolia subsp. mexicana

Keywords: Biodiversity, cloud forest, restoration ecology, Sierra Madre Oriental, succession

Abstract

Background: Several studies have called attention to beech forest conservation and restoration in Mexico. Human activities (e.g., logging and grazing) have perturbed the few beech forests that persist in the Sierra Madre Oriental, Mexico. However, basic information about ecological relationship in beech forests are scarce.

Questions: How are the relationship among structural components in a forest with high dominance of Fagus grandiflora subsp. mexicana?

Species study: Fagus grandiflora subsp. mexicana an endangered tree species.

Study site and dates: During 2015-2016 in a beech forest of Fagus grandiflora subsp. mexicana in San Bartolo Tutotepec, Hidalgo, Mexico.

Methods: In four circular plots (11.28 m diameter), all tree species were recorded. For seed bank sampling five circular subplots were established in each plot. Two soil samples (50 × 50 cm and 5 cm deep) were collected and seedlings were recorded in five subplots (two meters in diameter) in each plot. All species of seeds, seedlings and trees were identified.

Results: Seed bank was composed of 32 species while 17 and 9 species were registered for seedlings and trees, respectively. F. grandifolia subsp. mexicana and Quercus delgadoana were abundant both in seedling bank and tree canopy. Species compositions among the three beech forest structural components were significantly different.

Conclusions: The relationship among structural components were low. Quercus delgadoana in a future scenario would replace F. grandiflora subsp. mexicana as the dominant species in the forest.

Downloads

Download data is not yet available.

Author Biography

Numa P. Pavón, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo

Centro de Investigaciones Biológicas, UAEH

Profesor Investigador

Biodiversity relationships in three structural components in a beech forest of <em>Fagus grandifolia</em> subsp. <em>mexicana</em>

References

Abe M, Miguchi H, Honda A, Makita A, Nakashizuka T. 2005. Short‐term changes affecting regeneration of Fagus crenata after the simultaneous death of Sasa kurilensis. Journal of Vegetation Science 16: 49-56. https://doi.org/10.1111/j.1654-1103.2005.tb02337.x

Álvarez-Aquino C, Williams-Linera G. 2002. Seedling bank dynamics of Fagus grandifolia var. mexicana before and after a mast year in a Mexican cloud forest. Journal of Vegetation Science 13: 179-184. https://doi.org/10.1111/j.1654-1103.2002.tb02037.x

Álvarez Aquino C, Williams Linera G, Newton AC. 2005. Disturbance effects on the seed bank of mexican cloud forest fragments. Biotropica 37: 337-342. https://doi.org/10.1111/j.1744-7429.2005.00044.x

Álvarez-Buylla ER, Martínez-Ramos M. 1990. Seed bank versus seed rain in the regeneration of a tropical pioneer tree. Oecologia 84: 314-325. https://doi.org/10.1007/BF00329755

Antos JA, Guest HJ, Parish R. 2005. The tree seedling bank in an ancient montane forest: stress tolerators in a productive habitat. Journal of Ecology 93:536-543. https://doi.org/10.1111/j.1365-2745.2005.00968.x

Barna M, Bosela M. 2015. Tree species diversity change in natural regeneration of a beech forest under different management. Forest Ecology and Management 342: 93-102. https://doi.org/10.1016/j.foreco.2015.01.017

Bedoya-Patiño JG, Estévez-Varón JV, Castaño-Villa GJ. 2010. Banco de semillas del suelo y su papel en la recuperación de los bosques tropicales. Museo de Historia Natural 14: 77-91.

Brang P. 2001. Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. Forest Ecology and Management 145: 107-119. https://doi.org/10.1016/s0378-1127(00)00578-8

Bossuyt B, Heyn M, Hermy M. 2002. Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecology 162: 33-48. https://doi.org/10.1023/A:1020391430072

Cao KF. 1995. Fagus dominance in Chinese montane forests: natural regeneration of Fagus lucida and Fagus hayatae var. pashanica. China: Wageningen, Agricultural University. ISBN: 90-5485-330-1; ISBN 9789054853305

Cao KF, Peters R. 1997. Species diversity of Chinese beech forests in relation to warmth and climatic disturbances. Ecological Research 12: 175-189. https://doi.org/10.1007/BF02523783

Chao A, Chazdon RL, Colwell RK, Shen TJ. 2006. Abundance‐based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361-371. DOI: https://doi.org/10.1111/j.1541-0420.2005.00489.x

Chao A, Jost L. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533-2547. DOI: https://doi.org/10.1890/11-1952.1

Collet C, Piboule A, Leroy O, Frochot H. 2008. Advance Fagus sylvatica and Acer pseudoplatanus seedlings dominate tree regeneration in a mixed broadleaved former coppice-with-standards forest. Forestry 81:135-150. https://doi.org/10.1093/forestry/cpn004

Collet C, Fournier M, Ningre F, Hounzandji API, Constant T. 2011. Growth and posture control strategies in Fagus sylvatica and Acer pseudoplatanus saplings in response to canopy disturbance. Annals of Botany 107: 1345-1353. https://doi.org/10.1093/aob/mcr058

CONAFOR [Comisión Nacional Forestal]. 2012. Inventario Nacional Forestal y de Suelos, Informe 2004-2009. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), México. http://www.ccmss.org.mx/wp-content/uploads/2014/10/Inventario_nacional_forestal_y_de_suelos_informe_2004_-_2009_.pdf (accessed November 16, 2018).

Dalling JW. 2002. Ecología de semillas. In: Guariguata MR, Kattan GH. Eds. Ecología y Conservación de Bosques Neotropicales, p. 345-375, Costa Rica: Asociacion De Editoriales. ISBN-10: 9968801119; ISBN-13: 978-9968801119

Degen T, Devillez F, Jacquemart AL. 2005. Gaps promote plant diversity in beech forests (Luzulo-Fagetum), North Vosges, France. Annals of Forest Science 62: 429-440. https://doi.org/10.1051/forest:2005039

Díaz WA, Elcoro S. 2009. Plantas colonizadoras en áreas perturbadas por la minería en el Estado Bolívar, Venezuela. Acta Botánica Venezuelica 32: 453-466.

Dölle M, Petritan AM, Biris IA, Petritan IC. 2017. Relations between tree canopy composition and understorey vegetation in a European beech-sessile oak old growth forest in Western Romania. Biologia 72: 1422-1430. DOI: https://doi.org/10.1515/biolog-2017-0165

Dougall TAG, Dodd JC. 1997. A study of species richness and diversity in seed banks and its use for the environmental mitigation of a proposed holiday village development in a coniferized woodland in south east England. Biodiversity & Conservation 6: 1413-1428. https://doi.org/10.1023/A:1018345915418

EPPO [European and Mediterranean Plant Protection Organization Global Database]. 2016. The situation of Baccharis halimifolia in the EPPO region. < https://gd.eppo.int/ > (accessed December 3, 2018).

Esmailzadeh O, Hosseini SM, Tabari M, Baskinb CC, Asadi H. 2011. Persistent soil seed banks and floristic diversity in Fagus orientalis forest communities in the Hyrcanian vegetation region of Iran. Flora - Morphology, Distribution, Functional Ecology of Plants 206: 365-372. https://doi.org/10.1016/j.flora.2010.04.024

Forrester JA, Runkle JR. 2000. Mortality and replacement patterns of an old-growth Acer-Fagus woods in the Holden Arboretum, northeastern Ohio. The American Midland Naturalist 144: 227-243. https://doi.org/10.1674/0003-0031(2000)144[0227:MARPOA]2.0.CO;2

Godínez-Ibarra O, Ángeles-Pérez G, López-Mata L, García-Moya E, Valdez-Hernández JI, de los Santos-Posadas H, Trinidad-Santos A. 2007. Seed rain and seedling emergence of Fagus grandifolia subsp. mexicana at La Mojonera, Hidalgo, Mexico. Revista Mexicana de Biodiversidad 78: 117-128. DOI: http://dx.doi.org/10.22201/ib.20078706e.2007.001.394

Gonzalez M, Deconchat M, Balent G, Cabanettes A. 2008. Diversity of woody plant seedling banks under closed canopy in fragmented coppice forests. Annals of Forest Science 65: 511-511. https://doi.org/10.1051/forest:2008029

González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC. 2011. The Red List of Mexican cloud forest trees. Cambridge: Fauna y Flora International. ISBN: 9781903703281

Gotelli NJ, Ellison AM. 2004. Primer of ecological statistics. Sinauer Associates Publishers, Massachusetts, USA. ISBN: 9781605350646

Grime JP. 2006. Plant Strategies, Vegetation Processes and Ecosystem Properties, USA:. John Wiley & Sons, ISBN-10: 047085040X; ISBN-13: 978-0470850404

Gutiérrez-Lozano M, Sánchez-González A, López-Mata L, Tejero-Díez D. 2017. Taxonomic richness of lycophytes and ferns of the Mexican beech forest: Highest ever recorded among Fagus forests worldwide? Flora 229: 23-31. https://doi.org/10.1016/j.flora.2017.02.008

Hara M. 1987. Analysis of seedling banks of a climax beech forest: ecological importance of seedling sprouts. Vegetatio 71: 67-74.

Hopfensperger KN. 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116: 1438-1448. https://doi.org/10.1111/j.0030-1299.2007.15818.x

Houle G. 1994. Spatiotemporal patterns in the components of regeneration of four sympatric tree species–Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. Journal of Ecology 82: 39-53.

INEGI [Instituto Nacional de Estadística y Geografía]. 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos San Bartolo Tutotepec, Hidalgo Clave geoestadística 13053 2009. <http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/13/13053.pdf> (accessed July 2, 2019).

Jost L. 2006. Entropy and diversity. Oikos 113: 363-375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

Kuninaga T, Hirayama K, Sakimoto M. 2015. Negative canopy-understorey interaction shapes the sapling bank of Fagus crenata in a cool-temperate, conifer-hardwood mixed forest. Plant Ecology 216: 1191-1202. https://doi.org/10.1007/s11258-015-0501-9

Lavorel S. 1999. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Diversity and Distribution 5: 3-13. https://doi.org/10.1046/j.1472-4642.1999.00033.x

Li X, Liu W, Tang CQ. 2010. The role of the soil seed and seedling bank in the regeneration of diverse plant communities in the subtropical Ailao Mountains, Southwest China. Ecological Research 25: 1171-1182. https://doi.org/10.1007/s11284-010-0742-y

Lutz HJ. 1930. Original forest composition in northwestern Pennsylvania as indicated by early land survey notes. Journal of Forestry 28: 1098-1103. DOI: https://doi.org/10.1093/jof/28.8.1098

Martínez-Orea Y, Castillo-Argüero S, Álvarez-Sánchez J, Collazo-Ortega M, Zavala-Hurtado A. 2013. Lluvia y banco de semillas como facilitadores de la regeneración natural en un bosque templado de la ciudad de México. Interciencia 38: 400-409.

Martínez-Ramos M. 1994. Regeneración natural y diversidad de especies arbóreas en selvas húmedas. Boletín de la Sociedad Botánica de México 54: 179-24. DOI: http://dx.doi.org/10.17129/botsci.1431

Martínez-Ramos M, García-Orth X. 2007. Sucesión ecológica y restauración de las selvas húmedas. Boletín de la Sociedad Botánica de México 80S: 69-84. DOI: http://dx.doi.org/10.17129/botsci.1758

Nagel TA, Svoboda M, Rugani T, Diaci J. 2010. Gap regeneration and replacement patterns in an old-growth Fagus-Abies forest of Bosnia-Herzegovina. Plant Ecology 208: 307-318. https://doi.org/10.1007/s11258-009-9707-z

Oksanen J, Guillaume F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens HMH, Szoecs E, Wagner H. 2017. Vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan (accessed January 23, 2013).

Olano JM, Caballero I, Laskurain NA, Loidi J, Escudero A. 2002. Seed bank spatial pattern in a temperate secondary forest. Journal of Vegetation Science 13: 775-784. https://doi.org/10.1111/j.1654-1103.2002.tb02107.x

Ortiz-Arroña A, Sánchez-Velásquez LR, Castillo BJ. 2008. Banco de semillas en el suelo de un bosque mesófilo de montaña en la Sierra de Manantlán, México. Scientia-CUCBA 10: 81-94.

Ortiz-Quijano AB, Sánchez-González A, López-Mata L, Villanueva-Díaz J. 2016. Population structure of Fagus grandifolia subsp. mexicana in the cloud forest of Hidalgo State, Mexico. Botanical Sciences 94: 483-497. https://doi.org/10.17129/botsci.515

Peñuelas J, Ogaya R, Boada M, Jump A. 2007. Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography 30: 829-837. https://doi.org/10.1111/j.2007.0906-7590.05247.x

Peters R, Platt WJ. 1996. Growth strategies of main trees and forest architecture of a Fagus-Magnolia forest in Florida, USA. Vegetatio 123: 39-49. DOI: https://doi.org/10.1007/BF00044886

Pignatti S, Cresta C, Testi A, Crosti R, Fukushima T, Maldonado SN. 2006. Comparative ecological investigations in Fagus forests of Japan, Italy and Mexico. Rendiconti Lincei 17: 299-310. https://doi.org/10.1007/BF02904768

Ponce-Reyes R, Reynoso-Rosales VH, Watson JEM, VanderWal J, Fuller RA, Pressey RL, Possingham HP. 2012. Vulnerability of cloud forest reserves in Mexico to climate change. Nature Climate Change 2: 448-452. 2: 1-5. https://doi.org/10.1038/nclimate1453

Poulson TL, Platt WJ. 1996. Replacement patterns of beech and sugar maple in Warren Woods, Michigan. Ecology 77: 1234-1253. https://doi.org/10.2307/2265592

Quintana-Ascencio PF, Gonzalez-Espinosa M., Ramírez-Marcial N, Domínguez-Vazquez G, Martinez-Ico M. 1996. Soil seed banks and regeneration of tropical rain forest from milpa fields at the Selva Lacandona, Chiapas, Mexico. Biotropica 28: 192-209. https://doi.org/10.2307/2389074

Ramírez-Marcial N, González-Espinoza M, Quintana-Ascencio PF. 1992. Banco y lluvia de semillas en comunidades sucesionales de bosques de pino-encino de los altos de Chiapas, México. Acta Botánica Mexicana 20: 59-75. https://doi.org/10.21829/abm20.1992.658

Rodríguez-Ramírez ECh, Sánchez-González A, Ángeles-Pérez G. 2013. Current distribution and coverage of Mexican forests Fagus grandifolia subsp. mexicana in Mexico. Endangered Species Research 20: 205-216. https://doi.org/10.3354/esr00498

Rowden A, Robertson A, Allnutt T, Heredia S, Williams-Linera G, Newton A. 2004. Conservation genetics of Mexican beech, Fagus grandifolia var. mexicana. Conservation Genetics 5: 475-484. https://doi.org/10.1023/B:COGE.0000041028.02423.c0

Rozza AF, Turini FF, Rodrigues RR. 2007. Ecological management of degraded forest fragments. In: Rodrigues RR, Martins SV, Gandolfi S. Eds. High Diversity Forest Restoration in Degraded Areas, Nueva York: Nova Science Publishing pp. 171-196. ISBN-10: 1600214215; ISBN-13: 978-1600214219

Rutledge DT 2003. Landscape indices as measures of the effects of fragmentation: can pattern reflect process? New Zealand: Department of Conservation. ISBN: 0-478-22380-3

Salazar A, Goldstein G, Franco AC, Miralles-Wilhelm F. 2011. Timing of seed dispersal and dormancy, rather than persistent soil seed-banks, control seedling recruitment of woody plants in Neotropical savannas. Seed Science Research 21: 103-116. https://doi.org/10.1017/S0960258510000413

Schmidt I, Leuschner C, Mölder A, Schmidt W. 2009. Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. Forest Ecology and Management 257: 695-702. https://doi.org/10.1016/j.foreco.2008.09.052

Shen ZH, Fang JY, Chiu CA, Chen TY. 2015. The geographical distribution and differentiation of Chinese beech forests and the association with Quercus. Applied Vegetation Science 18: 23-33. https://doi.org/10.1111/avsc.12108

Stride G, Thomas CD, Benedick S, Hodgson JA, Jelling A, Senior MJ, Hill JK. 2018. Contrasting patterns of local richness of seedlings, saplings, and trees may have implications for regeneration in rainforest remnants. Biotropica 50: 889-897. DOI: https://doi.org/10.1111/btp.12605

R Core Team (2017). R: A language and environment for statistical computing. R Foundadion for. Statistical Computing, Vienna, Austria.

Thompson K. 2000. The functional ecology of soil seed banks. In: Fenner M. Ed. Seeds: The Ecology of Regeneration in Plant Communities, pp. 215-235, London: CABI Publishing. ISBN-10: 0851994326; ISBN-13: 978-0851994321

Valladares F, Chico J, Aranda I, Balaguer L, Dizengremel P, Manrique E, Dreyer E. 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16: 395-403. https://doi.org/10.1007/s00468-002-0184-4

Van der Valk AG, Pederson RL, Davis CB. 1992. Restoration and creation of freshwater wetlands using seed banks. Wetlands Ecology and Management 1: 191-197. https://doi.org/10.1007/BF00244924

Walker L, Walker J, del Moral R. 2007. Forging a new alliance between succession and restoration. In: Walker LR, Walker J, Hobbs RJ, eds. Linking Restoration and Ecological Succession, pp. 1-18, USA: Springer. ISBN-10: 038735302X; ISBN-13: 978-0387353029

Waltert B, Wiemken V, Rusterholz HP, Boller T, Baur B. 2002. Disturbance of forest by trampling: Effects on mycorrhizal roots of seedlings and mature trees of Fagus sylvatica. Plant and Soil 243: 143-154. https://doi.org/10.1023/A:1019983625473

Williams-Linera G. 1993. Soil seed banks in four lower montane forests of Mexico. Journal of Tropical Ecology 9: 321-337. https://doi.org/10.1017/S0266467400007379

Williams-Linera G, Rowden A, Newton AC. 2003. Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biological Conservation 109: 27-36. https://doi.org/10.1016/S0006-3207(02)00129-5

Published
2019-12-19
How to Cite
Calva-Soto, K., Pavón, N. P., Sanchéz-González, A., Moreno, C. E., & Ramírez-Marcial, N. (2019). Biodiversity relationships in three structural components in a beech forest of <em>Fagus grandifolia</em> subsp. <em>mexicana</em&gt;. Botanical Sciences, 97(4), 675-684. https://doi.org/10.17129/botsci.2260