Historical and contemporary climate legacy of the large-scale distributional patterns of plant richness across different taxonomic levels: An assessment of protected areas in China

Chun-Jing Wang, Ji-Zhong Wan


Background: Historical and contemporary climates may shape the distributional patterns of plant species richness across different scales. However, few studies have focused on the effects of historical and contemporary climate changes on the distributional patterns of plant richness in Chinese protected areas across different taxonomic levels.

Hypotheses: Historical and contemporary climates can have an important legacy effect on the large-scale distributional patterns of plant richness across different taxonomic levels.

Studied species: Vascular plants.

Study site: China.

Method: We used data on plant richness at the family, genus, and species levels from Chinese protected areas and applied regression modelling to explore the relationships between climate change and plant richness among vascular, fern, seed, gymnosperm, and angiosperm plants based on paleoclimate (Last Glacial Maximum; LGM, ca. 22,000 years ago) and contemporary climate data.

Results: The large-scale distributional patterns of plant richness could be predicted across different taxonomic levels on the basis of paleoclimate and contemporary climate data. Specifically, historical and contemporary climate variables were found to better correlate with fern plant richness than seed plant richness. For seed plants, the explanatory power of historical and contemporary climate variables was found to be stronger for the richness of gymnosperms than for the richness of angiosperms.

Conclusions: The distributional pattern of plant richness could be predicted across different taxonomic levels after including paleoclimate (LGM, ca. 22,000 years ago) and contemporary climate data from China. Our study could support the effectiveness of the management of protected areas in China.


China; climate legacy; conservation; paleoclimate; plant diversity; taxonomic level; vascular plants


Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484-492. DOI: https://doi.org/10.1111/j.1461-0248.2011.01610.x

Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, Wanket J, Marshall CR. 2016. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences 113: 856-861. DOI: https://doi.org/10.1073/pnas.1505295112

Blonder B, Enquist BJ, Graae BJ, Kattge J, Maitner BS, Morueta-Holme N, Ordonez A, Šímová I, Singarayer J, Svenning J, Valdes PJ, Violle C. 2018. Late Quaternary climate legacies in contemporary plant functional composition. Global Change Biology 24: 4827-4840. DOI: https://doi.org/10.1111/gcb.14375

Bond WJ. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227-249. DOI: https://doi.org/10.1111/j.1095-8312.1989.tb00492.x

Boyce CK, Lee JE. 2017. Plant evolution and climate over geological timescales. Annual Review of Earth and Planetary Sciences 45: 61-87. DOI: https://doi.org/10.1146/annurev-earth-063016-015629

Brunsdon C, Fotheringham AS, Charlton ME. 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis 28: 281-298. DOI: https://doi.org/10.1111/j.1538-4632.1996.tb00936.x

Colinvaux PA, De Oliveira PE. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166: 51-63. DOI: https://doi.org/10.1016/s0031-0182(00)00201-7

Collinson ME. 2001. Cainozoic ferns and their distribution. Brittonia 53: 173-235. DOI: https://doi.org/10.1007/bf02812700

Collinson ME. 2002. The ecology of Cainozoic ferns. Review of Palaeobotany and Palynology 119: 51-68. DOI: https://doi.org/10.1016/s0034-6667(01)00129-4

Cotton JM, Cerling TE, Hoppe KA, Mosier TM, Still CJ. 2016. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum. Science Advances 2: e1501346. DOI: https://doi.org/10.1126/sciadv.1501346

Dı́az S, Cabido M. 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655. DOI: https://doi.org/10.1016/S0169-5347(01)02283-2

Diniz-Filho JAF, Bini LM, Hawkins BA. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12: 53-64. DOI: https://doi.org/10.1046/j.1466-822X.2003.00322.x

Dubiel RF. 1987. Sedimentology of the Upper Triassic Chinle Formation, southeastern Utah: paleoclimatic implications. Journal of the Arizona-Nevada Academy of Science 22: 35-45. DOI: https://www.jstor.org/stable/40024382

Eiserhardt WL, Bjorholm S, Svenning JC, Rangel TF, Balslev H. 2011. Testing the water-energy theory on American palms (Arecaceae) using geographically weighted regression. PLOS One 6: e27027. DOI: https://doi.org/10.1371/journal.pone.0027027

Fang J, Wang Z, Tang Z, Brown JH. 2012. Large-scale patterns of tree species richness and the metabolic theory of ecology. Global Ecology and Biogeography 21: 508-512. DOI: https://doi.org/10.1111/j.1466-8238.2011.00688.x

Feng G, Mao L, Benito BM, Swenson NG, Svenning JC. 2017. Historical anthropogenic footprints in the distribution of threatened plants in China. Biological Conservation 210: 3-8. DOI: https://doi.org/10.1016/j.biocon.2016.05.038

Fonseca CR, Ganade G. 2001. Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecology 89: 118-125. DOI: https://doi.org/10.1046/j.1365-2745.2001.00528.x

Foody GM. 2004. Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecology and Biogeography 13: 315-320. DOI: https://doi.org/10.1111/j.1466-822X.2004.00097.x

Gerstner K, Dormann CF, Stein A, Manceur AM, Seppelt R. 2014. Effects of land use on plant diversity-A global meta-analysis. Journal of Applied Ecology 51: 1690-1700. DOI: https://doi.org/10.1111/1365-2664.12329

Huang J, Lu X, Huang J, Ma K. 2016. Conservation priority of endemic Chinese flora at family and genus levels. Biodiversity and Conservation 5: 23-35. DOI: https://doi.org/10.1007/s10531-015-1027-0

Keppel G, Mokany K, Wardell-Johnson GW, Phillips BL, Welbergen JA, Reside AE. 2015. The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment 13: 106-112. DOI: https://doi.org/10.1890/140055

Kier G, Mutke J, Dinerstein E, Ricketts TH, Küper W, Kreft H, Barthlott W. 2005. Global patterns of plant diversity and floristic knowledge. Journal of Biogeography 32: 1107-1116. DOI: https://doi.org/10.1111/j.1365-2699.2005.01272.x

Kraft NJ, Godoy O, Levine JM. 2015. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences 112: 797-802. DOI: https://doi.org/10.1073/pnas.1413650112

Kreft H, Jetz W. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences 104: 5925-5930. DOI: https://doi.org/10.1073/pnas.0608361104

Kuebbing SE, Maynard DS, Bradford MA. 2018. Linking functional diversity and ecosystem processes: A framework for using functional diversity metrics to predict the ecosystem impact of functionally unique species. Journal of Ecology 106: 687-698. DOI: https://doi.org/10.1111/1365-2745.12835

Lawrence DM, Oleson KW. 2012. The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. Journal of Climate 25: 2240-2260. DOI: https://doi.org/10.1175/JCLI-D-11-00103.1

Lister AM. 2004. The impact of Quaternary ice ages on mammalian evolution. Philosophical Transactions of the Royal Society B: Biological Sciences 359: 221-41. DOI: https://doi.org/10.1098/rstb.2003.1436

Liu J, Ouyang Z, Pimm SL, Raven PH, Wang X, Miao H, Han N. 2003. Protecting China's biodiversity. Science 300: 1240-1241. DOI: https://doi.org/10.1126/science.1078868

Liu Y, Su X, Shrestha N, Xu X, Wang S, Li Y, Wang Q, Sandanov, Wang Z. 2018. Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography 42: 334-345. DOI: https://doi.org/10.1111/ecog.03698

López-Pujol J, Zhang FM, Ge S. 2006. Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodiversity and Conservation 15: 3983-4026. DOI: https://doi.org/10.1007/s10531-005-3015-2

Lu LM, Mao LF, Yang T, Ye JF, Liu B, Li HL, Sun M, Miller JT, Mathews S, Hu HH, Niu YT, Peng DX, Chen YH, Smith SA, Chen M, Xiang KL, Le CT, Dang VC, Lu AM, Soltis PS, Soltis DE, Li JH, Chen ZD. 2018. Evolutionary history of the angiosperm flora of China. Nature 554: 234-238. DOI: https://doi.org/10.1038/nature25485

Lundholm JT. 2009. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science 20: 377-391. DOI: https://doi.org/10.1111/j.1654-1103.2009.05577.x

Lü L, Cai H, Yang Y, Wang Z, Zeng H. 2018. Geographic patterns and environmental determinants of gymnosperm species diversity in China. Biodiversity Science 26: 1133-1146. DOI: https://doi.org/10.17520/biods.2018098

Ma Z, Sandel B, Svenning JC. 2016. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms. Ecology and Evolution 6: 3092-3106. DOI: https://doi.org/10.1002/ece3.2100

Mellin C, Mengersen K, Bradshaw CJA, Caley MJ. 2014. Generalizing the use of geographical weights in biodiversity modelling. Global Ecology and Biogeography 23: 1314-1323. DOI: https://doi.org/10.1111/geb.12203

Millar TR, Heenan PB, Wilton AD, Smissen RD, Breitwieser I. 2017. Spatial distribution of species, genus and phylogenetic endemism in the vascular flora of New Zealand, and implications for conservation. Australian Systematic Botany 30: 134-147. DOI: https://doi.org/10.1071/sb16015

Naeem S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12: 39-45. DOI: https://doi.org/10.1111/j.1523-1739.1998.96379.x

Nagelkerke NJ. 1991. A note on a general definition of the coefficient of determination. Biometrika 78: 691-692. DOI: https://doi.org/10.2307/2337038

Naugolnykh SV, Wang L, Han M, Jin JH. 2016. A new find of the fossil Cyclosorus from the Eocene of South China and its paleoclimatic implication. Journal of Plant Research 129: 3-12. DOI: https://doi.org/10.1007/s10265-015-0765-0

Normand S, Ricklefs RE, Skov F, Bladt J, Tackenberg O, Svenning JC. 2011. Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences 278: 3644–3653. DOI: https://doi.org/10.1098/rspb.2010.2769

O'Brien EM. 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography 25: 379-398. DOI: https://doi.org/10.1046/j.1365-2699.1998.252166.x

O'Brien EM, Whittaker RJ, Field R. 1998. Climate and woody plant diversity in southern Africa: relationships at species, genus and family levels. Ecography 21: 495-509. DOI: https://doi.org/10.1111/j.1600-0587.1998.tb00441.x

Peppe DJ, Lemons CR, Royer DL, Wing SL, Wright IJ, Lusk CH, Rhoden CH. 2014. Biomechanical and leaf-climate relationships: a comparison of ferns and seed plants. American Journal of Botany 101: 338-347. DOI: https://doi.org/10.3732/ajb.1300220

Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecology Letters 5: 02-411. DOI: https://doi.org/10.1046/j.1461-0248.2002.00339.x

Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741-758. DOI: https://doi.org/10.1111/j.1461-0248.2006.00924.x

Pimm SL, Joppa LN. 2015. How many plant species are there, where are they, and at what rate are they going extinct? Annals of the Missouri Botanical Garden 100: 170-176. DOI: https://doi.org/10.3417/2012018

Prinzing A. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proceedings of the Royal Society B: Biological Sciences 268: 2383-2389. DOI: https://doi.org/10.1098/rspb.2001.1801

Qin D, Ding Y, Mu M. 2015. Climate and environmental change in China: 1951-2012. Gernman: Springer. eISBN 978-3-662-48482-1

Qian H, Ricklefs RE. 2007. A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecology Letters 10: 737-744. DOI: https://doi.org/10.1111/j.1461-0248.2007.01066.x

Rangel TF, Diniz-Filho JAF, Bini LM. 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33: 46-50. DOI: https://doi.org/10.1111/j.1600-0587.2009.06299.x

Rosenfeld JS. 2002. Functional redundancy in ecology and conservation. Oikos 98: 156-162. DOI: https://doi.org/10.1034/j.1600-0706.2002.980116.x

Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC. 2011. The influence of Late Quaternary climate-change velocity on species endemism. Science 334: 660-664. DOI: https://doi.org/10.1126/science.1210173

Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553. DOI: https://doi.org/10.1038/nature02361

Shrestha N, Wang Z, Su X, Xu X, Lyu L, Liu Y, Dimitrov D, Kennedy JD, Wang Q, Tang Z, Feng X . 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography 27: 913-924. DOI: https://doi.org/10.1111/geb.12750

Svenning JC. 2003. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters 6: 646-653. DOI: https://doi.org/10.1046/j.1461-0248.2003.00477.x

Svenning JC, Sandel B. 2013. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany 100: 1266-1286. DOI: https://doi.org/10.3732/ajb.1200469

Svenning JC, Skov F. 2007. Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology and Biogeography 16: 234-245. DOI: https://doi.org/10.1111/j.1466-8238.2006.00280.x

Svenning JC, Eiserhardt WL, Normand S, Ordonez A, Sandel B. 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annual Review of Ecology, Evolution, and Systematics 46: 551-572. DOI: https://doi.org/10.1146/annurev-ecolsys-112414-054314

Tang L, Shao G, Piao Z, Dai L, Jenkins MA, Wang S, Wu G, Wu J, Zhao J. 2010. Forest degradation deepens around and within protected areas in East Asia. Biological Conservation 143: 1295-1298. DOI: https://doi.org/10.1016/j.biocon.2010.01.024

Thompson K, Askew AP, Grime JP, Dunnett NP, Willis AJ. 2005. Biodiversity, ecosystem function and plant traits in mature and immature plant communities. Functional Ecology 19: 355-358. DOI: https://doi.org/10.1111/j.0269-8463.2005.00936.x

Tilman D, Lehman CL, Thomson KT. 1997. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences 94: 1857-1861. DOI: https://doi.org/10.1073/pnas.94.5.1857

Trugman AT, Medvigy D, Anderegg WR, Pacala SW. 2018. Differential declines in Alaskan boreal forest vitality related to climate and competition. Global Change Biology 24: 1097-1107. DOI: https://doi.org/10.1111/gcb.13952

Wan JZ, Wang CJ, Yu FH. 2017. Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Climatic Change 144: 303-316. DOI: https://doi.org/10.1007/s10584-017-2044-7

Wan JZ, Wang CJ, Yu FH. 2018. Human footprint and climate disappearance in vulnerable ecoregions of protected areas. Global and Planetary Change 170: 260-268. DOI: https://doi.org/10.1016/j.gloplacha.2018.09.002

Wan J, Wang C, Yu J, Nie S, Han S, Liu J, Zu Y, Wang Q. 2016. Developing conservation strategies for Pinus koraiensis and Eleutherococcus senticosus by using model-based geographic distributions. Journal of Forestry Research 27: 389-400. DOI: https://doi.org/10.1007/s11676-015-0170-5

Wan J, Wang C, Yu J, Nie S, Han S, Zu Y, Chen C, Yuan S, Wang, Q. (2014). Model‐based conservation planning of the genetic diversity of Phellodendron amurense Rupr due to climate change. Ecology and Evolution 4: 2884-2900. DOI: https://doi.org/10.1002/ece3.1133

Wang CJ. 2017. Geographical Distribution Pattern and Spatial Conservation Prioritization for Wild Plants in China under Climate Change. Ph.D. thesis, Beijing Forestry University.

Wang Q, Su X, Shrestha N, Liu Y, Wang S, Xu X, Wang Z. 2017. Historical factors shaped species diversity and composition of Salix in eastern Asia. Scientific Reports 7: 42038. DOI: https://doi.org/10.1038/srep42038

Wang Z, Fang J, Tang Z, Lin X. 2010. Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences 278: 2122-2132. DOI: https://doi.org/10.1098/rspb.2010.1897

Wang Z, Fang J, Tang Z, Lin X. 2012. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography 35: 1124-1133. DOI: https://doi.org/10.1111/j.1600-0587.2011.06781.x

Watkins Jr J, Cardelús CL. 2012. Ferns in an angiosperm world: cretaceous radiation into the epiphytic niche and diversification on the forest floor. International Journal of Plant Sciences 173: 695-710. DOI: https://doi.org/10.1086/665974

White HJ, Montgomery WI, Pakeman RJ, Lennon JJ. 2018. Spatiotemporal scaling of plant species richness and functional diversity in a temperate semi-natural grassland. Ecography 41: 845-856. DOI: https://doi.org/10.1111/ecog.03111

Xu W, Svenning JC, Chen G, Chen B, Huang J, Ma K. 2018. Plant geographical range size and climate stability in China: Growth form matters. Global Ecology and Biogeography 27: 506-517. DOI: https://doi.org/10.1111/geb.12710

Xu X, Wang Z, Rahbek C, Sanders NJ, Fang J. 2016. Geographical variation in the importance of water and energy for oak diversity. Journal of Biogeography 43: 279-288. DOI: https://doi.org/10.1111/jbi.12620

Yang H, Li Y, Wu M, Zhang ZHE, Li L, Wan S. 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology 17: 2936-2944. DOI: https://doi.org/10.1111/j.1365-2486.2011.02423.x

Yang W, Ma K, Kreft H. 2014. Environmental and socio-economic factors shaping the geography of floristic collections in China. Global Ecology and Biogeography 23: 1284-1292. DOI: https://doi.org/10.1111/geb.12225

Zhang L, Luo Z, Mallon D, Li C, Jiang Z. 2017. Biodiversity conservation status in China's growing protected areas. Biological Conservation 210: 89-100. DOI: https://doi.org/10.1016/j.biocon.2016.05.005

DOI: http://dx.doi.org/10.17129/botsci.2211

Article Metrics

Abstract Views.
Total number of Abstract Views for this article.
a description of the source 70
This journal

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Botanical Sciences is an international peer-reviewed journal that publishes scientific papers in plant sciences. The arguments, figures / schemes / photographs, quality and the general contents of this publication are full responsibility of the authors, and not commit the Editor- in-Chief or the Sociedad Botánica de México.

Botanical Sciences year 8, Vol. 97, No. 3, July-September 2019. Quarterly publication edited and published by Sociedad Botánica de México A.C. (www.socbot.mx). Editor in Chief Salvador Arias, Jardín Botánico, Instituto de Biología, 3er Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510. Reserves of Rights to the Exclusive Use No. 04-2017-040716054100-203, digital-ISSN 2007-4476, both granted by the Instituto Nacional del Derecho de Autor. Responsible for updating the page Pedro López, email: plopez@escire.mx, eScire. Last update July 18, 2019.

Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



website counter