Nodule-forming Sinorhizobium and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico

  • Selene Gómez-Acata Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City
  • Enriqueta Amora-Lazcano Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City
  • En Tao Wang Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City
  • Flor N. Rivera-Orduña Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City
  • Juan Carlos Cancino-Diaz Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City
  • Juan Antonio Cruz-Maya Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City
  • Janet Jan-Roblero Escuela Nacional de Ciencias Biológicas- Instituto Politécnico Nacional
Keywords: Acacia farnesiana, mycorrhiza, rhizobia, symbiosis

Abstract

Background: Cerro de la Estrella (CE) is a natural reserve in Mexico City that suffers from afforestation, and its restoration with Acacia farnesiana is being considered.

Question: Will the nodule-forming rhizobia and arbuscular mycorrhizal fungi (AMF) associated with the CE soil support A. farnesiana growth?

Study species: Acacia farnesiana (L.) Willd. (Fabaceae).

Methods: Mycorrhizal fungi, nodule-forming rhizobia and physicochemical characteristics of the CE soil were studied to determine if they are suitable for improving the growth of Acacia farnesiana.

Results: Four different families of AMF were found which generated 13 % mycorrhization with A. farnesiana. However, A. farnesiana from CE did not nodulate, suggesting the lack of native rhizobia. The CE soil has low fertility. Nodules of A. farnesiana were obtained from the soil in Ticuman, Morelos, and 66 rhizobia were isolated from them. Rhizobium isolates were individually added to A. farnesiana grown in the CE soil. Five of the 66 isolates yielded significant differences in shoot dry weight, shoot height, number of nodules, nodulation time and nitrogenase activity compared with the Sinorhizobium americanum CFNEI 156 control strain (p < 0.05). Three isolates were named as S. americanum ENCBTM1, ENCBTM31 and ENCBTM43, and last two as Sinorhizobium sp. ENCBTM34 and ENCBTM45.

Conclusions: CE soil had low fertility and lacked specific rhizobia for A. farnesiana. The individual addition of S. americanum (ENCBTM1, ENCBTM31 or ENCBTM43) or Sinorhizobium sp. (ENCBTM34 or ENCBTM45) improved the growth of A. farnesiana.

Downloads

Download data is not yet available.

Author Biography

Janet Jan-Roblero, Escuela Nacional de Ciencias Biológicas- Instituto Politécnico Nacional

Microbiology Department

 

Nodule-forming <em>Sinorhizobium</em> and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico

References

Aprile F, Lorandi R. 2012. Evaluation of cation exchange capacity (CEC) in tropical soil four different analytical methods. Journal of Agricultural Science. 4: 278-289. DOI: https://doi.org/10.5539/jas.v4n6p278

Barrientos-Ramírez L, Vargas-Radillo J, Rodríguez-Rivas A, Ochoa-Ruíz H, Navarro-Arzate XF, Zorrilla J. 2012. Evaluación de las características del fruto de huizache (Acacia farnesiana (L.) Willd.) para su posible uso en curtiduría o alimentación animal. Madera y Bosques 18: 23-35.

Blažka P, Fischer Z. 2014. Moisture, water holding, drying and wetting in forest soils. Open Journal of Soil Science 4: 174-184. DOI: https://doi.org/10.4236/ojss.2014.45021

Brundrett M, Bougher BD, Grove T, Malajczuk N. 1996. Working with Glomalean fungi. In: Brundrett M, Bougher BD, Grove T, Malajzuk N, eds. Working with Mycorrhizas in Forestry and Agricultura. Camberra, Australia: Australian Centre for International Agricultural Research, pp. 141-186. ISBN-13: 978-1863201810

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. DOI: https://10.1186/1471-2105-10-421

Camargo-Ricalde S. 2017. Some biological aspects of the arbuscular mycorrhizal fungi (AMF). Botanical Sciences 68: 15-32. DOI: https://doi.org/10.17129/botsci.1633

Campanella JJ, Bitincka L, Smalley J. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics. 4: 29. DOI: https://doi.org/10.1186/1471-2105-4-29

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 9: 772. https://doi.org/DOI:10.1038/nmeth.2109

Delsouz-Khaki B, Honarjoo N, Davatgar N, Jalalian A, Torabi-Golsefidi H. 2017. Assessment of two soil fertility indexes to evaluate paddy fields for rice cultivation. Sustainability 9: 1299. DOI: https://doi.org/10.3390/su9081299

Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M. 2007. Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to senegalese soils in relation to salinity and pH of the sampling sites. Microbial Ecology 54: 553-566. DOI: https://doi.org/10.1007/s00248-007-9243-0

Fall D, Diouf D, Ourarhi M, Faye A, Abdelmounen H, Neyra M, Sylla SN, Missbah Idrissi El M. 2008. Phenotypic and genotypic characteristics of Acacia senegal (L.) Willd. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Letters in Applied Microbiology 47: 85-97. DOI: https://doi.org/10.1111/j.1472-765X.2008.02389.x

Genderman JW, Nicolson JH. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46: 235-244. DOI: https://doi.org/10.1016/S0007-1536(63)80079-0

Giovannetti M, Mosse B. 1980. An evaluation of techniques for measuring vesicular- arbuscular mycorrhizal infection in roots. New Phytologist 84: 489-500. DOI: https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

Guindon S, Dufayard JF, Lefort V, Anisimova M. Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307-321. DOI: https://doi.org/10.1093/sysbio/syq010

IBG. 2016. The international bank for the Glomeromycota. Leibniz-Institute for vegetables and crops. http://www.i-beg.eu (accessed August 18, 2016).

INVAM. 2019. International culture collection of (vesicular) arbuscular mycorrhizal fungi. West Virginia University. https://invam.wvu.edu/ (accessed July 29, 2019).

Kazmierczak T, Nagymihály M, Lamouche F, Barrière Q, Guefrachi I, Alunni B, Ouadghiri M, Ibijbijen J, Kondorosi É, Mergaert P, Gruber V. 2017. Specific host-responsive associations between Medicago truncatula accessions and Sinorhizobium strains. Molecular Plant Microbe Interacttions 30: 399-409. DOI: https://doi.org/10.1094/MPMI-01-17-0009-R

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. DOI: https://doi.org/10.1093/bioinformatics/btm404

Lauriano-Barajas J, Vega-Frutis R. 2018. Infectivity and effectivity of commercial and native arbuscular mycorrhizal biofertilizers in seedlings of maize (Zea mays). Botanical Sciences 96: 395-404. DOI: https://doi.org/10.17129/botsci.1855

Lei X, Wang ET, Chen WF, Sui XH, Chen WX. 2008. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Archives of Microbiology 190: 657-671. DOI: https://doi.org/10.1007/s00203-008-0418-y

Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E. 2007. Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Systematic and Applied Microbiology 30: 280-290. DOI: https://doi.org/10.1016/j.syapm.2006.12.002

Mandal SM, Pati BR, Das AK, Ghosh AK. 2008. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field. Journal of General and Applied Microbiology 54: 93-99. DOI: https://doi.org/10.2323/jgam.54.93

Meghvansi MK, Prasad K, Harwani D, Mahna SK. 2008. Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. European Journal of Soil Biology 44: 316-323. DOI: https://doi.org/10.1016/j.ejsobi.2008.03.003

Meharg AA, Hartley‐Whitaker J. 2002. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154: 29-43. DOI: https://doi.org/10.1046/j.1469-8137.2002.00363.x

Monroy-Ata A, Estevez-Torres J, García-Sánchez R, Ríos-Gómez R. 2007. Plant establishment through the use of micorrhizae and resource island in a disturbed xerophytic scrub. Botanical Sciences 80S: 49-57. DOI: https://doi.org/10.17129/botsci.1756

Montaño NM, Alarcón A, Camargo-Ricalde SL, Hernández-Cuevas LV, Álvarez-Sánchez J, González-Chávez MDCA, Gavito ME, Sánchez-Gallen I, Ramos-Zapata J, Guadarrama P, Maldonado-Mendoza IE, Castillo-Argüero S, García-Sánchez R, Trejo D, Ferrera-Cerrato R. 2012. Research on arbuscular mycorrhizae in Mexico: an historical synthesis and future prospects. Symbiosis 57: 111-126. DOI: https://doi.org/10.1007/s13199-012-0184-0

Montero-García IA. 2002. Huizachtepetl: Geografía Sagrada de Iztapalapa. Ciudad de México. ISBN: 968-6789-00-6

Oldroyd GE, Dixon R. 2014. Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology 26: 19-24. DOI: https://doi.org/10.1016/j.copbio.2013.08.006

Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158-161. DOI: https://doi.org/10.1016/S0007-1536(70)80110-3

Rhoades JD, Mantghi NA, Shause PJ, Alves W. 1989. Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal 53: 428-433. DOI: https://doi.org/10.2136/sssaj1989.03615995005300020019x

Rodríguez-Echeverría S, Crisóstomo JA, Freitas H. 2007. Genetic diversity of rhizobia associated with Acacia longifolia in two stages of invasion of coastal sand dunes. Applied and Environmental Microbiology 73: 5066-5070. DOI: https://doi.org/10.1128/AEM.00613-07

Romdhane SB, Nasr H, Samba-Mbaye R, Neyra M, Ghorbal MH, De Lajudie P. 2006. Genetic diversity of Acacia tortilis ssp. raddiana rhizobia in Tunisia assessed by 16S and 16S-23S rDNA genes analysis. Journal of Applied Microbiology 100: 436-445. DOI: https://doi.org/10.1111/j.1365-2672.2005.02765.x

Sá-Pereira P, Rodrigues M, Castro IVE, Simoes F. 2007. Identification of an arsenic resistance mechanism in rhizobial strains. World Journal of Microbiology and Biotechnology 23: 1351-1356. DOI: https://doi.org/10.1007/s11274-007-9370-2

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2002. Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. Segunda sección, 31 de diciembre del 2002.

SEMARNAT. 2007. Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación. Segunda sección, 2 de marzo del 2007.

Somasegaran P, Hoben HJ. 1994. Handbook for rhizobia: methods in legume-Rhizobium technology. New York: Springer-Verlag New York, Inc. DOI: https://doi.org/10.1007/978-1-4613-8375-8; ISBN: 978-1461383772

Thrall PH, Millsom DA, Jeavons AC, Waayers M, Harvey GR, Bahnall DJ, Brockwell J. 2005. Seed inoculation with effective root-nodule bacteria enhances revegetation success. Journal of Applied Ecology 42: 740-751. DOI: https://doi.org/10.1111/j.1365-2664.2005.01058.x

Toledo I, Lloret L, Martínez-Romero E. 2003. Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Systematic and Applied Microbiology 26: 54-64. DOI: https://doi.org/10.1078/072320203322337317

Tovar-Franco J. 2006. Selección en invernadero de inóculos de micorriza arbuscular (MA) para establecimiento de la alfalfa en un andisol de la sabana de Bógota. Universitas Scientiarum 11: 87-103.

Udaiyan K, Karthikeyan A, Muthukumar T. 1996. Influence of edaphic and climatic factors on dynamics of root colonization and spore density of vesicular-arbuscular mycorrhizal fungi in Acacia farnesiana Willd. and A. planifrons W. et. A. Trees 11: 65-71. DOI: https://doi.org/10.1007/PL00009657

Vincent JM. 1970. A manual for the practical study of the root‐nodule bacteria. IBP Handbook No. 15. Oxford-Edinburgh: Blackwell Scientific Publications. DOI: https://doi.org/10.1002/jobm.19720120524; ISBN 10: 0632064102; ISBN-13: 978-0632064106

Vinuesa P, Silva C, Werner D, Martínez-Romero E. 2005. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Molecular Phylogenetics and Evolution 34: 29-54. DOI: https://doi.org/10.1016/j.ympev.2004.08.020

Xia YS, Chen BD, Christie P, Smith FA, Wang YS, Li XL. 2007. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. Journal of Environmental Sciences 19: 1245-1251. DOI: https://doi.org/10.1016/S1001-0742(07)60203-4

Xu P, Christie P, Liu Y, Zhang J, Li X. 2008. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environmental Pollution 156: 215-220. DOI: https://doi.org/10.1016/j.envpol.2008.01.003

Published
2019-12-19
How to Cite
Gómez-Acata, S., Amora-Lazcano, E., Wang, E. T., Rivera-Orduña, F. N., Cancino-Diaz, J. C., Cruz-Maya, J. A., & Jan-Roblero, J. (2019). Nodule-forming <em>Sinorhizobium</em&gt; and arbuscular mycorrhizal fungi (AMF) improve the growth of Acacia farnesiana (Fabaceae): an alternative for the reforestation of the Cerro de la Estrella, Mexico. Botanical Sciences, 97(4), 609-622. https://doi.org/10.17129/botsci.2200