Phytochemical variation among populations of Fouquieria splendens Engelm. (Fouquieriaceae)

Hugo Manuel Monreal-García, Norma Almaraz-Abarca, José Antonio Ávila-Reyes, Rene Torres-Ricario, M. Socorro González-Elizondo, Yolanda Herrera-Arrieta, Marcela Verónica Gutiérrez-Velázquez


Background: Secondary metabolites are important chemomarkers. However, as a system to confront biotic and abiotic stress, chemical composition can vary, improving the phenotypic plasticity of plants.  We determined the potential of the foliar and floral phenolic composition, floral carotenoid contents to discriminate between two subspecies of Fouquieria splendens and assessed the effect of atypical environmental conditions on the chemical composition of a relict population of the subspecies splendens.

Hypothesis: We hypothesized that chemical differences have arisen between the analyzed subspecies and in the relict population allowing the differentiation between them.

Species studied: Fouquieria splendens subsp. splendens and Fouquieria splendens subsp. campanulata (Fouquieriaceae).

Study site and years of study:  Mezquital, Peñón Blanco, and San Juan del Río, Durango, México. March to August 2016.

Methods: Foliar and floral extracts were analyzed by HPLC-DAD, UV-visible spectrophotometry, and FTIR-ATR. Multivariate analysis was used to assess the sample distinctiveness and to establish the relation between the chemical composition and environmental variables.

Results: The chemical composition was highly conserved between the analyzed samples. Contrarily, an evident distinctiveness between phytochemical contents was observed. Soil parameters were the factors determining the particular quantitative phenolic profiles.

Conclusions: The analyzed subspecies and populations showed similar chemical patterns; however, quantitative variations, determined by soil texture, electrical conductivity, organic matter, organic carbon, and contents of K, Ca, and Na, allowed to differentiate them. The important phenolic quantitative variation of the atypical population of F. splendens subsp. splendens suggests a relevant contribution of phenolic compounds to the adaptation to its relict condition.


Fouquieria splendens; phenolics; flavonoids; HPLC-DAD; FTIR-ATR

Full Text:



Aguirre‐Liguori JA, Scheinvar E, Eguiarte LE. 2014. Gypsum soil restriction drives genetic differentiation in Fouquieria shrevei (Fouquieriaceae). American Journal of Botany 101: 730-736. DOI:

Alara OR, Abdurahman NH, Abdul-Mudalip SK, Olalere OA. 2018. Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves. Journal of Food Measurement and Characterization 12: 311-316. DOI:

Almaraz-Abarca N, González-Elizondo MS, Tena-Flores JA, Ávila-Reyes JA, Herrera-Corral J, Naranjo-Jiménez N. 2006. Foliar flavonoids distinguish Pinus leiophylla and Pinus chihuanuana (Coniferales: Pinaceae). Proceedings of the Biological Society of Washington 119: 426-437. DOI:[426:FFDPLA]2.0.CO;2

Ávila-Reyes JA, Almaraz-Abarca N, Chaidez-Ayala AI, Ramírez-Noya D, Delgado-Alvarado EA, Torres-Ricario R, Alanís-Bañuelos RE. 2018. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers. Brazilian Journal of Biology 78: 98-107. DOI:

Azwanida NN. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal & Aromatic Plants 4: 196. DOI:

Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99, 191-203. DOI:

Barriada-Bernal LG, Almaraz-Abarca N, Delgado-Alvarado EA, Gallardo-Velázquez T, Ávila-Reyes JA, Torres-Morán MI, González-Elizondo MS, Herrera-Arrieta Y. 2014. Flavonoid composition and antioxidant capacity of the edible flowers of Agave durangensis (Agavaceae). CyTA-Journal of Food 12: 105-114. DOI:

Ben Ahmed Z, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Mangelings D, Vander Heyden Y. 2017. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharmaceutical Biology 55: 1185-1194. DOI:

Berman J, Sheng Y, Gómez-Gómez L, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P, Zhu C. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PloS One 11: e0162410. DOI:

Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF, Paula JR. 2013. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Revista Brasileira de Farmacognosia 23: 230-238. DOI:

Campos MG, Markham KR. 2007. Structure information from HPLC and on-line measured absorption spectra: flavone, flavonols and phenolic acids. Coimbra University Press. Coimbra, Portugal. ISBN: 9898074051; 9789898074058

Carlquist S. 2000. Wood anatomy of Fouquieriaceae in relation to habit, ecology, and systematics; nature of meristems in wood and bark. Aliso: A Journal of Systematic and Evolutionary Botany 19: 137-163. DOI:

Chen YC, Lin JT, Liu SC, Lu PS, Yang DJ. 2011. Composition of flavonoids and phenolic acids in lychee (Litchi Chinensis Sonn.) flower extracts and their antioxidant capacities estimated with human LDL, erythrocyte, and blood models. Journal of Food Science 76: C724-C728. DOI:

Couture JJ, Singh A, Rubert‐Nason KF, Serbin SP, Lindroth RL, Townsend PA. 2016. Spectroscopic determination of ecologically relevant plant secondary metabolites. Methods in Ecology and Evolution 7: 1402-1412. DOI:

Dambolena JS, Zunino MP, Lucini EI, Olmedo R, Banchio E, Bima PJ, Zygadlo JA. 2010. Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations. Journal of Agricultural and Food Chemistry 58: 1115-1120. DOI:

Darrow K, Bowers MD. 1997. Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochemical Systematics and Ecology 25: 1-11. DOI:

de Rosso VV, Hillebrand S, Cuevas-Montilla E, Bobbio FO, Winterhalter P, Mercadante AZ. 2008. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. Journal of Food Composition and Analysis 21: 291-299. DOI:

del Valle JC, Buide ML, Casimiro-Soriguer I, Whittall JB, Narbona E. 2015. On flavonoid accumulation in different plant parts: variation patterns among individuals and populations in the shore campion (Silene littorea). Frontiers in Plant Science 6: 939. DOI:

Derosa G, Maffioli P, Sahebkar A. 2016. Ellagic acid and its role in chronic diseases. Advances in Experimental Biology 928: 473-479. DOI:

Domínguez XA, Velasquez OJ, Guerra D. 1972. Extractives from the flowers of Fouquieria splendens. Phytochemistry 11:2888. DOI:

Falcone-Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3: 222. DOI:

Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Brunel-Muguet S. 2017. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends in Plant Science 22: 610-623. DOI:

Giusti MM, Wrolstad RE. 2001. Anthocyanins. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Wrolstad RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York, F1.2.1-F1.2.13. DOI:

González-Elizondo MS, González-Elizondo M, López-Enríquez IL, Reséndiz-Rojas L, Tena-Flores JA, Retana-Rentería FI. 2011. El complejo Agave victoriae-reginae (Agavaceae). Acta Botanica Mexicana 95: 65-94.

Grasel FS, Ferrão MF, Wolf CR. 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 153: 94-101. DOI:

Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y, Ávila-Reyes JA, González-Valdez LS, Torres-Ricario R, Uribe-Soto JN, Monreal-García HM. 2018. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). Electronic Journal of Biotechnology 34: 9-16. DOI:

Habel JC, Assmann T, Schmitt T, Avise JC. 2010. Relict Species: From past to future. In: Habel JC, Assmann T, eds. Relict species. Phytogeography and Conservation Biology, 1-5. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-92160-8

Heller W, Forkmann G. 1994. Biosynthesis of flavonoids. In: Harborne JB, ed. The flavonoids. Advances in research since 1986, 499-535. Chapman & Hall, London. ISBN 9780412480706

Henrickson J. 1972. A taxonomic revision of Fouquieriaceae. Aliso: A Journal of Systematic and Evolutionary Botany 7: 439-537. DOI:

Ho GTT, Kase ET, Wangensteen H, Barsett H. 2017. Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry 65: 2677-2685. DOI:

Itidel C, Chokri M, Mohamed B, Yosr Z. 2013. Antioxidant activity, total phenolic and flavonoid content variation among Tunisian natural populations of Rhus tripartita (Ucria) Grande and Rhus pentaphylla Desf. Industrial Crops and Products 51: 171-177. DOI:

Jaouadi R, Cardoso SM, Silva AMS, Yahia IBH, Boussaid M, Zaouali Y. 2018. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochemical Systematics and Ecology 77: 10-15. DOI:

Julkunen-Tiitto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33: 213-217. DOI:

Kaundun SS, Lebreton P, Fady B. 1998. Geographical variability of Pinus halepensis Mill. as revealed by foliar flavonoids. Biochemical Systematics and Ecology 26: 83-96. DOI:

Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annual Review of Food Science and Technology 8: 155-180. DOI:

Killingbeck KT. 1992. Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens), a drought-deciduous desert shrub. The Southwestern Naturalist 37: 35-42. DOI:

Kim DO, Lee CY. 2002. Extraction and isolation of polyphenolics. In: Wrolstad RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons: New York. DOI:

Labidi S, Jeddi FB, Tisserant B, Debiane D, Rezgui S, Grandmougin-Ferjani A, Sahraoui ALH. 2012. Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22: 337-345. DOI:

Ladyman JAR. 2004. Fouquieria splendens Engelm. Fouquieriaceae. In: Francis JK, ed. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions: Volume 1. 347–349, US Dept. of Agriculture, Forest Service, International Institute of Tropical Forestry, University of Minesota.

Laitinen ML, Julkunen-Tiitto R, Rousi M. 2000. Variation in phenolic compounds within a birch (Betula pendula) population. Journal of Chemical Ecology 26: 1609-1622. DOI:

Lavola A, Salonen A, Virjamo V, Julkunen-Tiitto R. 2017. Phytochemical variation in the plant-part specific phenols of wild crowberry (Empetrum hermaphroditum Hagerup) populations. Phytochemistry Letters 21: 11-20. DOI:

Lin LZ, Harnly JM. 2010. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chemistry 120: 319-326. DOI:

Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. 2016. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports 6: 28591. DOI:

Luo Q, Zhang J, Yan L, Tang Y, Ding X, Yang Z, Sun Q. 2011. Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. Journal of Medicinal Food 14: 1609-1616. DOI:

Malheiro R, Sá O, Pereira E, Aguiar C, Baptista P, Pereira JA. 2012. Arbutus unedo L. leaves as source of phytochemicals with bioactive properties. Industrial Crops and Products 37: 473-478. DOI:

Mantilla SV, Manrique AM, Gauthier-Maradei P. 2015. Methodology for extraction of phenolic compounds of bio-oil from agricultural biomass wastes. Waste and Biomass Valorization 6: 371-383. DOI:

Medina-Medrano JR, Almaraz-Abarca N, González-Elizondo MS, Uribe-Soto JN, González-Valdez LS, Herrera-Arrieta Y. 2015. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical Studies 56: 1-13. DOI:

Medini F, Fellah H, Ksouri R, Abdelly C. 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science 8: 216-224. DOI:

Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Scholes GD. 2017. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews 117: 249-293. DOI:

Monreal GHM. 2015. Compuestos fenólicos y la actividad biológica de tres especies de plantas silvestres del estado de Durango, México (Fouquieria splendens, Dodonaea viscosa y Physalis angulata). MSc. Thesis, Instituto Politécnico Nacional.

Moore BD, Andrew RL, Külheim C, Foley WJ. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist 201: 733-750. DOI:

Murugan M, Mohan VR. 2014. Phytochemical, FT-IR and antibacterial activity of whole plant extract of Aerva lanata (L.) Juss. Ex. Schult. Journal of Medicinal Plants Studies 4: 51-57.

Ncube B, Finnie JF, Van Staden J. 2012. Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany 82: 11-20. DOI:

Nikolić B, Ristić M, Tešević V, Marin PD, Bojović S. 2011. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan. Chemistry & Biodiversity 8: 2247-2260. DOI:

Niu J, Zhang G, Zhang W, Goltsev V, Sun S, Wang J, Li P, Ma F. 2017. Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Scientific Reports 7: 7684. DOI:

Nobel PS, Zutta BR. 2005. Morphology, ecophysiology, and seedling establishment for Fouquieria splendens in the northwestern Sonoran Desert. Journal of Arid Environments 62: 251-265. DOI:

Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry 97: 452-458. DOI:

Pavarini DP, Pavarini SP, Niehues M, Lopes NP. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology 176: 5-16. DOI:

Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6: 1720-1731. DOI:

Reyes-Martínez A, Almaraz-Abarca N, Gallardo-Velázquez T, González-Elizondo MA, Herrera-Arrieta Y, Pajarito-Ravelero A, Alanís-Bañuelos RE, Torres-Morán MI. 2014. Evaluation of foliar phenols of 25 Mexican varieties of common bean (Phaseolus vulgaris L.) as antioxidants and varietal markers. Natural Products Research 28: 2158-2162. DOI:

Sampaio BL, Edrada-Ebel R, Da Costa FB. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports 6: 29265. DOI:

Schlag EM, McIntosh MS. 2013. The relationship between genetic and chemotypic diversity in American ginseng (Panax quinquefolius L.). Phytochemistry 93: 96-104. DOI:

Schönenberger J, Grenhagen A. 2005. Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Systematics and Evolution 254: 233-249. DOI:

Schultheis LM, Baldwin BG. 1999. Molecular phylogenetics of Fouquieriaceae: evidence from nuclear rDNA ITS studies. American Journal of Botany 86: 578-589. DOI:

Scogin R. 1977. Anthocyanins of the Fouquieriaceae. Biochemical Systematics and Ecology 5: 265-267. DOI:

Scogin R. 1978. Leaf phenolics of the Fouquieriaceae. Biochemical Systematics and Ecology 6: 297-298. DOI:

Scott KJ. 2001. Detection and measurement of carotenoids by UV/VIS spectrophotometry. In: Wrolstad, RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York. DOI:

Seitz C, Ameres S, Schlangen K, Forkmann G, Halbwirth H. 2015. Multiple evolution of flavonoid 3′, 5′-hydroxylase. Planta 242: 561-573. DOI:

Seleem D, Pardi V, Murata RM. 2017. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of Oral Biology 76: 76-83. DOI:

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2002. Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, México, DF.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.

Stanković MS, Petrović M, Godjevac D, Stevanović ZD. 2015. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? Journal of Arid Environments 120: 26-32. DOI:

Sundqvist MK, Wardle DA, Olofsson E, Giesler R, Gundale MJ. 2012. Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories. Functional Ecology 26: 1090–1099. DOI:

Uriu DM, Godoy BSA, Battirola LD, Andrighetti CR, Marques MI, Valladao DMD. 2017. Temporal variation of the total phenolic compounds concentration in Vochysia divergens Pohl. (Vochysiaceae) leaves in the Brazilian pantanal. Revista Árvore 41: e410316. DOI:

Vasavilbazo-Saucedo A, Almaraz-Abarca N, González-Ocampo HA, Ávila-Reyes JA, González-Valdez LS, Luna-González A, Delgado-Alvarado EA, Torres-Ricario R. 2018. Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose. CyTA-Journal of Food 16: 698-706. DOI:

Veit M, Beckert C, Höhne C, Bauer K, Geiger H. 1995. Interspecific and intraspecific variation of phenolics in the genus Equisetum subgenus Equisetum. Phytochemistry 38, 881-891. DOI:

Warnhoff EW, Halls CMM. 1965. Desert plant constituents: II. Ocotillol: an intermediate in the oxidation of hydroxy isoöctenyl side chains. Canadian Journal of Chemistry 43, 3311-3321. DOI:

Waser NM. 1979. Pollinator availability as a determinant of flowering time in ocotillo (Fouquieria splendens). Oecologia 39: 107-121. DOI:

Wittstock U, Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology 5: 300-307. DOI:

Wollenweber E, Yatskievych G. 1994. External Flavonoids of Ocotillo (Fouquieria splendens). Zeitschrift für Naturforschung C 49: 689-690. DOI:

Zamudio S. 1995. Familia Fouquieriaceae. In: Rzedowsky J, Calderón G, eds. Flora del Bajío y de Regiones Adyacentes. 36. Instituto de Ecología AC. Centro Regional del Bajío, Pátzcuaro, Michoacán, México.

Zhang W, Xu F, Zwiazek JJ. 2015. Responses of jack pine (Pinus banksiana) seedlings to root zone pH and calcium. Environmental and Experimental Botany 111: 32-41. DOI:

Zhu C, Bai C, Sanahuja G, Yuan D, Farré G, Naqvi S, Shi L, Capell T, Christou P. 2010. The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics 504: 132-141. DOI:


Article Metrics

Abstract Views.
Total number of Abstract Views for this article.
a description of the source 67
This journal

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Botanical Sciences is an international peer-reviewed journal that publishes scientific papers in plant sciences. The arguments, figures / schemes / photographs, quality and the general contents of this publication are full responsibility of the authors, and not commit the Editor- in-Chief or the Sociedad Botánica de México.

Botanical Sciences year 8, Vol. 97, No. 3, July-September 2019. Quarterly publication edited and published by Sociedad Botánica de México A.C. ( Editor in Chief Salvador Arias, Jardín Botánico, Instituto de Biología, 3er Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510. Reserves of Rights to the Exclusive Use No. 04-2017-040716054100-203, digital-ISSN 2007-4476, both granted by the Instituto Nacional del Derecho de Autor. Responsible for updating the page Pedro López, email:, eScire. Last update July 18, 2019.

Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



website counter