Phytochemical variation among populations of Fouquieria splendens Engelm. (Fouquieriaceae)

  • Hugo Manuel Monreal-García Instituto Politécnico Nacional
  • Norma Almaraz-Abarca Instituto Politécnico Nacional
  • José Antonio Ávila-Reyes Instituto Politécnico Nacional
  • Rene Torres-Ricario Instituto Politécnico Nacional
  • M. Socorro González-Elizondo Instituto Politécnico Nacional
  • Yolanda Herrera-Arrieta Instituto Politécnico Nacional
  • Marcela Verónica Gutiérrez-Velázquez Instituto Politécnico Nacional

Abstract

Background: Secondary metabolites are important chemomarkers. However, as a system to confront biotic and abiotic stress, chemical composition can vary, improving the phenotypic plasticity of plants.  We determined the potential of the foliar and floral phenolic composition, floral carotenoid contents to discriminate between two subspecies of Fouquieria splendens and assessed the effect of atypical environmental conditions on the chemical composition of a relict population of the subspecies splendens.

Hypothesis: We hypothesized that chemical differences have arisen between the analyzed subspecies and in the relict population allowing the differentiation between them.

Species studied: Fouquieria splendens subsp. splendens and Fouquieria splendens subsp. campanulata (Fouquieriaceae).

Study site and years of study:  Mezquital, Peñón Blanco, and San Juan del Río, Durango, México. March to August 2016.

Methods: Foliar and floral extracts were analyzed by HPLC-DAD, UV-visible spectrophotometry, and FTIR-ATR. Multivariate analysis was used to assess the sample distinctiveness and to establish the relation between the chemical composition and environmental variables.

Results: The chemical composition was highly conserved between the analyzed samples. Contrarily, an evident distinctiveness between phytochemical contents was observed. Soil parameters were the factors determining the particular quantitative phenolic profiles.

Conclusions: The analyzed subspecies and populations showed similar chemical patterns; however, quantitative variations, determined by soil texture, electrical conductivity, organic matter, organic carbon, and contents of K, Ca, and Na, allowed to differentiate them. The important phenolic quantitative variation of the atypical population of F. splendens subsp. splendens suggests a relevant contribution of phenolic compounds to the adaptation to its relict condition.

Downloads

Download data is not yet available.

Author Biographies

Hugo Manuel Monreal-García, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
Norma Almaraz-Abarca, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
José Antonio Ávila-Reyes, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
Rene Torres-Ricario, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
M. Socorro González-Elizondo, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
Yolanda Herrera-Arrieta, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
Marcela Verónica Gutiérrez-Velázquez, Instituto Politécnico Nacional
Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional unidad Durango
Phytochemical variation among populations of Fouquieria splendens Engelm. (Fouquieriaceae)

References

Aguirre‐Liguori JA, Scheinvar E, Eguiarte LE. 2014. Gypsum soil restriction drives genetic differentiation in Fouquieria shrevei (Fouquieriaceae). American Journal of Botany 101: 730-736. DOI: https://doi.org/10.3732/ajb.1400031

Alara OR, Abdurahman NH, Abdul-Mudalip SK, Olalere OA. 2018. Characterization and effect of extraction solvents on the yield and total phenolic content from Vernonia amygdalina leaves. Journal of Food Measurement and Characterization 12: 311-316. DOI: https://doi.org/10.1007/s11694-017-9642-y

Almaraz-Abarca N, González-Elizondo MS, Tena-Flores JA, Ávila-Reyes JA, Herrera-Corral J, Naranjo-Jiménez N. 2006. Foliar flavonoids distinguish Pinus leiophylla and Pinus chihuanuana (Coniferales: Pinaceae). Proceedings of the Biological Society of Washington 119: 426-437. DOI: https://doi.org/10.2988/0006-324X(2006)119[426:FFDPLA]2.0.CO;2

Ávila-Reyes JA, Almaraz-Abarca N, Chaidez-Ayala AI, Ramírez-Noya D, Delgado-Alvarado EA, Torres-Ricario R, Alanís-Bañuelos RE. 2018. Foliar phenolic compounds of ten wild species of Verbenacea as antioxidants and specific chemomarkers. Brazilian Journal of Biology 78: 98-107. DOI: http://dx.doi.org/10.1590/1519-6984.07516

Azwanida NN. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal & Aromatic Plants 4: 196. DOI: https://doi.org/10.4172/2167-0412.1000196

Balasundram N, Sundram K, Samman S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry 99, 191-203. DOI: https://doi.org/10.1016/j.foodchem.2005.07.042

Barriada-Bernal LG, Almaraz-Abarca N, Delgado-Alvarado EA, Gallardo-Velázquez T, Ávila-Reyes JA, Torres-Morán MI, González-Elizondo MS, Herrera-Arrieta Y. 2014. Flavonoid composition and antioxidant capacity of the edible flowers of Agave durangensis (Agavaceae). CyTA-Journal of Food 12: 105-114. DOI: https://doi.org/10.1080/19476337.2013.801037

Ben Ahmed Z, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Mangelings D, Vander Heyden Y. 2017. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharmaceutical Biology 55: 1185-1194. DOI: https://doi.org/10.1080/13880209.2017.1291690

Berman J, Sheng Y, Gómez-Gómez L, Veiga T, Ni X, Farré G, Capell T, Guitián J, Guitián P, Sandmann G, Christou P, Zhu C. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PloS One 11: e0162410. DOI: https://doi.org/10.1371/journal.pone.0162410

Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF, Paula JR. 2013. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Revista Brasileira de Farmacognosia 23: 230-238. DOI: http://dx.doi.org/10.1590/S0102-695X2013005000019

Campos MG, Markham KR. 2007. Structure information from HPLC and on-line measured absorption spectra: flavone, flavonols and phenolic acids. Coimbra University Press. Coimbra, Portugal. ISBN: 9898074051; 9789898074058

Carlquist S. 2000. Wood anatomy of Fouquieriaceae in relation to habit, ecology, and systematics; nature of meristems in wood and bark. Aliso: A Journal of Systematic and Evolutionary Botany 19: 137-163. DOI: https://doi.org/10.5642/aliso.20001902.03

Chen YC, Lin JT, Liu SC, Lu PS, Yang DJ. 2011. Composition of flavonoids and phenolic acids in lychee (Litchi Chinensis Sonn.) flower extracts and their antioxidant capacities estimated with human LDL, erythrocyte, and blood models. Journal of Food Science 76: C724-C728. DOI: https://doi.org/10.1111/j.1750-3841.2011.02164.x

Couture JJ, Singh A, Rubert‐Nason KF, Serbin SP, Lindroth RL, Townsend PA. 2016. Spectroscopic determination of ecologically relevant plant secondary metabolites. Methods in Ecology and Evolution 7: 1402-1412. DOI: https://doi.org/10.1111/2041-210X.12596

Dambolena JS, Zunino MP, Lucini EI, Olmedo R, Banchio E, Bima PJ, Zygadlo JA. 2010. Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations. Journal of Agricultural and Food Chemistry 58: 1115-1120. DOI: https://doi.org/10.1021/jf903203n

Darrow K, Bowers MD. 1997. Phenological and population variation in iridoid glycosides of Plantago lanceolata (Plantaginaceae). Biochemical Systematics and Ecology 25: 1-11. DOI: https://doi.org/10.1016/S0305-1978(96)00090-7

de Rosso VV, Hillebrand S, Cuevas-Montilla E, Bobbio FO, Winterhalter P, Mercadante AZ. 2008. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. Journal of Food Composition and Analysis 21: 291-299. DOI: https://doi.org/10.1016/j.jfca.2008.01.001

del Valle JC, Buide ML, Casimiro-Soriguer I, Whittall JB, Narbona E. 2015. On flavonoid accumulation in different plant parts: variation patterns among individuals and populations in the shore campion (Silene littorea). Frontiers in Plant Science 6: 939. DOI: https://doi.org/10.3389/fpls.2015.00939

Derosa G, Maffioli P, Sahebkar A. 2016. Ellagic acid and its role in chronic diseases. Advances in Experimental Biology 928: 473-479. DOI: https://doi.org/10.1007/978-3-319-41334-1_20

Domínguez XA, Velasquez OJ, Guerra D. 1972. Extractives from the flowers of Fouquieria splendens. Phytochemistry 11:2888. DOI: https://doi.org/10.1016/S0031-9422(00)86538-3

Falcone-Ferreyra ML, Rius SP, Casati P. 2012. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science 3: 222. DOI: https://doi.org/10.3389/fpls.2012.00222

Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Brunel-Muguet S. 2017. Epigenetics for plant improvement: current knowledge and modeling avenues. Trends in Plant Science 22: 610-623. DOI: https://doi.org/10.1016/j.tplants.2017.04.009

Giusti MM, Wrolstad RE. 2001. Anthocyanins. Characterization and measurement of anthocyanins by UV–Visible spectroscopy. In: Wrolstad RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York, F1.2.1-F1.2.13. DOI: https://doi.org/10.1002/0471142913.faf0102s00

González-Elizondo MS, González-Elizondo M, López-Enríquez IL, Reséndiz-Rojas L, Tena-Flores JA, Retana-Rentería FI. 2011. El complejo Agave victoriae-reginae (Agavaceae). Acta Botanica Mexicana 95: 65-94. https://doi.org/10.21829/abm95.2011.268

Grasel FS, Ferrão MF, Wolf CR. 2016. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 153: 94-101. DOI: https://doi.org/10.1016/j.saa.2015.08.020

Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y, Ávila-Reyes JA, González-Valdez LS, Torres-Ricario R, Uribe-Soto JN, Monreal-García HM. 2018. Comparison of the phenolic contents and epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). Electronic Journal of Biotechnology 34: 9-16. DOI: https://doi.org/10.1016/j.ejbt.2018.04.005

Habel JC, Assmann T, Schmitt T, Avise JC. 2010. Relict Species: From past to future. In: Habel JC, Assmann T, eds. Relict species. Phytogeography and Conservation Biology, 1-5. Springer-Verlag, Berlin, Heidelberg. ISBN 978-3-540-92160-8

Heller W, Forkmann G. 1994. Biosynthesis of flavonoids. In: Harborne JB, ed. The flavonoids. Advances in research since 1986, 499-535. Chapman & Hall, London. ISBN 9780412480706

Henrickson J. 1972. A taxonomic revision of Fouquieriaceae. Aliso: A Journal of Systematic and Evolutionary Botany 7: 439-537. DOI: https://doi.org/10.5642/aliso.19720704.08

Ho GTT, Kase ET, Wangensteen H, Barsett H. 2017. Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry 65: 2677-2685. DOI: https://doi.org/10.1021/acs.jafc.6b05582

Itidel C, Chokri M, Mohamed B, Yosr Z. 2013. Antioxidant activity, total phenolic and flavonoid content variation among Tunisian natural populations of Rhus tripartita (Ucria) Grande and Rhus pentaphylla Desf. Industrial Crops and Products 51: 171-177. DOI: https://doi.org/10.1016/j.indcrop.2013.09.002

Jaouadi R, Cardoso SM, Silva AMS, Yahia IBH, Boussaid M, Zaouali Y. 2018. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochemical Systematics and Ecology 77: 10-15. DOI: https://doi.org/10.1016/j.bse.2017.12.009

Julkunen-Tiitto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry 33: 213-217. DOI: http://dx.doi.org/10.1021/jf00062a013

Kaundun SS, Lebreton P, Fady B. 1998. Geographical variability of Pinus halepensis Mill. as revealed by foliar flavonoids. Biochemical Systematics and Ecology 26: 83-96. DOI: https://doi.org/10.1016/S0305-1978(97)00092-6

Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annual Review of Food Science and Technology 8: 155-180. DOI: https://doi.org/10.1146/annurev-food-030216-025636

Killingbeck KT. 1992. Inefficient nitrogen resorption in a population of ocotillo (Fouquieria splendens), a drought-deciduous desert shrub. The Southwestern Naturalist 37: 35-42. DOI: https://doi.org/10.2307/3672144

Kim DO, Lee CY. 2002. Extraction and isolation of polyphenolics. In: Wrolstad RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons: New York. DOI: https://doi.org/10.1002/0471142913.fai0102s06

Labidi S, Jeddi FB, Tisserant B, Debiane D, Rezgui S, Grandmougin-Ferjani A, Sahraoui ALH. 2012. Role of arbuscular mycorrhizal symbiosis in root mineral uptake under CaCO3 stress. Mycorrhiza 22: 337-345. DOI: https://doi.org/10.1007/s00572-011-0405-z

Ladyman JAR. 2004. Fouquieria splendens Engelm. Fouquieriaceae. In: Francis JK, ed. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions: Volume 1. 347–349, US Dept. of Agriculture, Forest Service, International Institute of Tropical Forestry, University of Minesota.

Laitinen ML, Julkunen-Tiitto R, Rousi M. 2000. Variation in phenolic compounds within a birch (Betula pendula) population. Journal of Chemical Ecology 26: 1609-1622. DOI: https://doi.org/10.1023/A:1005582611863

Lavola A, Salonen A, Virjamo V, Julkunen-Tiitto R. 2017. Phytochemical variation in the plant-part specific phenols of wild crowberry (Empetrum hermaphroditum Hagerup) populations. Phytochemistry Letters 21: 11-20. DOI: https://doi.org/10.1016/j.phytol.2017.05.016

Lin LZ, Harnly JM. 2010. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chemistry 120: 319-326. DOI: https://doi.org/10.1016/j.foodchem.2009.09.083

Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. 2016. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports 6: 28591. DOI: https://doi.org/10.1038/srep28591

Luo Q, Zhang J, Yan L, Tang Y, Ding X, Yang Z, Sun Q. 2011. Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. Journal of Medicinal Food 14: 1609-1616. DOI: https://doi.org/10.1089/jmf.2011.1659

Malheiro R, Sá O, Pereira E, Aguiar C, Baptista P, Pereira JA. 2012. Arbutus unedo L. leaves as source of phytochemicals with bioactive properties. Industrial Crops and Products 37: 473-478. DOI: https://doi.org/10.1016/j.indcrop.2011.07.023

Mantilla SV, Manrique AM, Gauthier-Maradei P. 2015. Methodology for extraction of phenolic compounds of bio-oil from agricultural biomass wastes. Waste and Biomass Valorization 6: 371-383. DOI: https://doi.org/10.1007/s12649-015-9361-8

Medina-Medrano JR, Almaraz-Abarca N, González-Elizondo MS, Uribe-Soto JN, González-Valdez LS, Herrera-Arrieta Y. 2015. Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical Studies 56: 1-13. DOI: https://doi.org/10.1186/s40529-015-0101-y

Medini F, Fellah H, Ksouri R, Abdelly C. 2014. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for Science 8: 216-224. DOI: https://doi.org/10.1016/j.jtusci.2014.01.003

Mirkovic T, Ostroumov EE, Anna JM, van Grondelle R, Scholes GD. 2017. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews 117: 249-293. DOI: https://doi.org/10.1021/acs.chemrev.6b00002

Monreal GHM. 2015. Compuestos fenólicos y la actividad biológica de tres especies de plantas silvestres del estado de Durango, México (Fouquieria splendens, Dodonaea viscosa y Physalis angulata). MSc. Thesis, Instituto Politécnico Nacional.

Moore BD, Andrew RL, Külheim C, Foley WJ. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist 201: 733-750. DOI: https://doi.org/10.1111/nph.12526

Murugan M, Mohan VR. 2014. Phytochemical, FT-IR and antibacterial activity of whole plant extract of Aerva lanata (L.) Juss. Ex. Schult. Journal of Medicinal Plants Studies 4: 51-57.

Ncube B, Finnie JF, Van Staden J. 2012. Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany 82: 11-20. DOI: https://doi.org/10.1016/j.sajb.2012.05.009

Nikolić B, Ristić M, Tešević V, Marin PD, Bojović S. 2011. Terpene chemodiversity of relict conifers Picea omorika, Pinus heldreichii, and Pinus peuce, endemic to Balkan. Chemistry & Biodiversity 8: 2247-2260. DOI: https://doi.org/10.1002/cbdv.201100018

Niu J, Zhang G, Zhang W, Goltsev V, Sun S, Wang J, Li P, Ma F. 2017. Anthocyanin concentration depends on the counterbalance between its synthesis and degradation in plum fruit at high temperature. Scientific Reports 7: 7684. DOI: https://doi.org/10.1038/s41598-017-07896-0

Nobel PS, Zutta BR. 2005. Morphology, ecophysiology, and seedling establishment for Fouquieria splendens in the northwestern Sonoran Desert. Journal of Arid Environments 62: 251-265. DOI: https://doi.org/10.1016/j.jaridenv.2004.11.002

Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI. 2006. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry 97: 452-458. DOI: https://doi.org/10.1016/j.foodchem.2005.05.024

Pavarini DP, Pavarini SP, Niehues M, Lopes NP. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology 176: 5-16. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.002

Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6: 1720-1731. DOI: https://doi.org/10.4161/psb.6.11.17613

Reyes-Martínez A, Almaraz-Abarca N, Gallardo-Velázquez T, González-Elizondo MA, Herrera-Arrieta Y, Pajarito-Ravelero A, Alanís-Bañuelos RE, Torres-Morán MI. 2014. Evaluation of foliar phenols of 25 Mexican varieties of common bean (Phaseolus vulgaris L.) as antioxidants and varietal markers. Natural Products Research 28: 2158-2162. DOI: http://dx.doi.org/10.1080/14786419.2014.930855

Sampaio BL, Edrada-Ebel R, Da Costa FB. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Scientific Reports 6: 29265. DOI: https://doi.org/10.1038/srep29265

Schlag EM, McIntosh MS. 2013. The relationship between genetic and chemotypic diversity in American ginseng (Panax quinquefolius L.). Phytochemistry 93: 96-104. DOI: https://doi.org/10.1016/j.phytochem.2013.03.002

Schönenberger J, Grenhagen A. 2005. Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Systematics and Evolution 254: 233-249. DOI: https://doi.org/10.1007/s00606-005-0331-7

Schultheis LM, Baldwin BG. 1999. Molecular phylogenetics of Fouquieriaceae: evidence from nuclear rDNA ITS studies. American Journal of Botany 86: 578-589. DOI: https://doi.org/10.2307/2656819

Scogin R. 1977. Anthocyanins of the Fouquieriaceae. Biochemical Systematics and Ecology 5: 265-267. DOI: https://doi.org/10.1016/0305-1978(77)90023-0

Scogin R. 1978. Leaf phenolics of the Fouquieriaceae. Biochemical Systematics and Ecology 6: 297-298. DOI: https://doi.org/10.1016/0305-1978(78)90049-2

Scott KJ. 2001. Detection and measurement of carotenoids by UV/VIS spectrophotometry. In: Wrolstad, RE, ed. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York. DOI: https://doi.org/10.1002/0471142913.faf0202s00

Seitz C, Ameres S, Schlangen K, Forkmann G, Halbwirth H. 2015. Multiple evolution of flavonoid 3′, 5′-hydroxylase. Planta 242: 561-573. DOI: https://doi.org/10.1007/s00425-015-2293-5

Seleem D, Pardi V, Murata RM. 2017. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Archives of Oral Biology 76: 76-83. DOI: https://doi.org/10.1016/j.archoralbio.2016.08.030

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2002. Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, México, DF.

Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144-158.

Stanković MS, Petrović M, Godjevac D, Stevanović ZD. 2015. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? Journal of Arid Environments 120: 26-32. DOI: https://doi.org/10.1016/j.jaridenv.2015.04.008

Sundqvist MK, Wardle DA, Olofsson E, Giesler R, Gundale MJ. 2012. Chemical properties of plant litter in response to elevation: subarctic vegetation challenges phenolic allocation theories. Functional Ecology 26: 1090–1099. DOI: https://doi.org/10.1111/j.1365-2435.2012.02034.x

Uriu DM, Godoy BSA, Battirola LD, Andrighetti CR, Marques MI, Valladao DMD. 2017. Temporal variation of the total phenolic compounds concentration in Vochysia divergens Pohl. (Vochysiaceae) leaves in the Brazilian pantanal. Revista Árvore 41: e410316. DOI: http://dx.doi.org/10.1590/1806-90882017000300016

Vasavilbazo-Saucedo A, Almaraz-Abarca N, González-Ocampo HA, Ávila-Reyes JA, González-Valdez LS, Luna-González A, Delgado-Alvarado EA, Torres-Ricario R. 2018. Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose. CyTA-Journal of Food 16: 698-706. DOI: https://doi.org/10.1080/19476337.2018.1475424

Veit M, Beckert C, Höhne C, Bauer K, Geiger H. 1995. Interspecific and intraspecific variation of phenolics in the genus Equisetum subgenus Equisetum. Phytochemistry 38, 881-891. DOI: https://doi.org/10.1016/0031-9422(94)00658-G

Warnhoff EW, Halls CMM. 1965. Desert plant constituents: II. Ocotillol: an intermediate in the oxidation of hydroxy isoöctenyl side chains. Canadian Journal of Chemistry 43, 3311-3321. DOI: https://doi.org/10.1139/v65-461

Waser NM. 1979. Pollinator availability as a determinant of flowering time in ocotillo (Fouquieria splendens). Oecologia 39: 107-121. DOI: https://doi.org/10.1007/BF00346001.

Wittstock U, Gershenzon J. 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology 5: 300-307. DOI: https://doi.org/10.1016/S1369-5266(02)00264-9

Wollenweber E, Yatskievych G. 1994. External Flavonoids of Ocotillo (Fouquieria splendens). Zeitschrift für Naturforschung C 49: 689-690. DOI: https://doi.org/10.1515/znc-1994-9-1022

Zamudio S. 1995. Familia Fouquieriaceae. In: Rzedowsky J, Calderón G, eds. Flora del Bajío y de Regiones Adyacentes. 36. Instituto de Ecología AC. Centro Regional del Bajío, Pátzcuaro, Michoacán, México.

Zhang W, Xu F, Zwiazek JJ. 2015. Responses of jack pine (Pinus banksiana) seedlings to root zone pH and calcium. Environmental and Experimental Botany 111: 32-41. DOI: https://doi.org/10.1016/j.envexpbot.2014.11.001

Zhu C, Bai C, Sanahuja G, Yuan D, Farré G, Naqvi S, Shi L, Capell T, Christou P. 2010. The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics 504: 132-141. DOI: https://doi.org/10.1016/j.abb.2010.07.028.

Published
2019-09-01
How to Cite
Monreal-García, H. M., Almaraz-Abarca, N., Ávila-Reyes, J. A., Torres-Ricario, R., González-Elizondo, M. S., Herrera-Arrieta, Y., & Gutiérrez-Velázquez, M. V. (2019). Phytochemical variation among populations of Fouquieria splendens Engelm. (Fouquieriaceae). Botanical Sciences, 97(3), 398-412. https://doi.org/10.17129/botsci.2191
Section
PHYSIOLOGY / FISIOLOGÍA