Ten Native Tree Species for potential use in Soil Bioengineering in northeastern Mexico

  • Rebeca Zavala González Autonomous University of Nuevo Leon, Faculty of Forest Sciences, Nuevo León
  • Israel Cantú-Silva Autonomous University of Nuevo Leon, Faculty of Forest Sciences, Nuevo León
  • Laura Sánchez-Castillo Autonomous University of Nuevo Leon, Faculty of Forest Sciences, Nuevo León
  • Humberto González-Rodríguez Autonomous University of Nuevo Leon, Faculty of Forest Sciences, Nuevo León
  • Tetsuya Kubota Faculty of Agriculture, Kyushu University, Fukuoka
  • . Hasnawir Environment and Forestry Research and Development Institute of Makassar, Ministry of Environment and Forestry of Indonesia, Makassar, South Sulawesi

Abstract

Background:  Due to causes such as small-scale earthquakes or the increasing amount of heavy rainfall extreme events, many slopes are potentially unstable. Soil bioengineering is an effective tool for treatment of a variety of unstable and/ or eroding sites.

Question and hypothesis: Maximum force to breakage of the roots is influenced by diameter.

Tensile strength and modulus of elasticity of roots is different between species of the two different ecosystems: Tamaulipan thornscrub and Pine-oak forest.

Studied Species: Site 1: Acacia berlandieri, Cordia boissieri, Acacia rigidula, Havardia pallens, and Acacia farnesiana; Site 2: Quercus rysophylla, Pinus pseudostrobus, Quercus canbyi, Quercus polymorpha, and Arbutus xalapensis.

Study area and dates: Tamaulipan thornscrub in Northeastern Mexico (Linares, Nuevo León), from May to July 2016; and Pine-Oak forest in Sierra Madre Oriental, Iturbide, Nuevo Leon, from September to October 2016.

Methods: The species considered were selected based on their native characteristics (natural distribution, abundance in the area and widespread existence on slopes). The tests were conducted with the Universal Testing Machine Shimadzu type SLFL-100KN.

Results:  The relationships between tensile strength (Ts) and diameters of the studied species, and root diameters and modulus of elasticity (Eroot) were negative.

The minimum and maximum values of tensile strength varied from 1.86 N / mm2 in C. boissieri to 44.65 N/mm2 in A. rigidula.

Conclusions: Acacia berlandieri showed the highest tensile strength among all species of the two ecosystems, in the diametric group I (0.1 to 2.9 mm).

Downloads

Download data is not yet available.
Ten Native Tree Species for potential use in Soil Bioengineering in northeastern Mexico

References

Abdi E, Majnounian B, Genet M, Rahimi H. 2010. Quantifying the effects of root reinforcement of Persian Ironwood (Parrotia persiaca) on slope stability; a case study: Hillslope of Hyrcanian forests, northern Iran. Ecological Engineering 36: 1409-1416.DOI: https://doi.org/10.1016/j.ecoleng.2010.06.020

Alanís-Rodríguez E, Jiménez-Pérez J, Aguirre-Calderón O, Treviño-Garza E, Jurado-Ybarra E, González-Tagle M. 2008. Efecto del uso del suelo en la fitodiversidad del matorral espinoso tamaulipeco. Ciencia UANL XI: 56-62. DOI:

Ammann M, Böll A, Rickli C, Speck T, Holdenrieder O. 2009. Significance of tree root decomposition for shallow landslides. Forest Snow and Landscape Research 82: 79-94.

Begon M, Harper JL, Townsend CR. 1990. Ecology Individuals, Populations and Communities. Blackwell Scientific Publications. Malden MA. USA. 94. DOI: https://doi.org/10.2307/2260957

Bischetti GB, Chiaradia EA, Simonato T. Speziali B, Vitali B, Vullo P, Zocco A. 2005. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant and Soil 278: 11-22. DOI: https://doi.org/10.1007/s11104-005-0605-4

Bischetti GB, Chiaradia EA, Epis T, Morloti E. 2009. Root cohesion of forest Species in the Italian Alps. Plant Soil 324: 71-89. DOI: https://doi.org/10.1007/s11104-009-9941-0

Burylo M, Hudek C, Rey F. 2011. Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). Catena, 84: 70-78. DOI: https://doi.org/10.1016/j.catena.2010.09.007

Cantú-Silva I, González-Rodríguez H. 2002. Propiedades hidrológicas del dosel de los bosques de pino-encino en el noreste de México. Ciencia UANL 5: 72-78.

De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemeaker J, Muys B. 2008. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305: 207-226. DOI: https://doi.org/10.1007/511104-008-9553-0

Farjon A. 2013. Pinus pseudostrobus. The IUCN Red List of Threatened Species 2013: e.T42404A2977667.http://dx.doi.org/10.2305/IUCN.UK.20131.RLTS.T42404A2977667.en (accessed January 2018)

Friedel MH, Laycock WA, Bastin GN. 2000. Assessing rangeland condition and trend. In: Mannetje LT, Jones RM. Eds. Field and Laboratory Methods for Grassland and Animal Production Research, pp 227-262. Wallingford, UK: CABI Publishing. ISBN-10: 0851993516 ISBN-13: 978-0851993515,

García E. 1981. Modificaciones al Sistema de Clasificación Climática de Köppen para adaptarlo a las condiciones de la República Mexicana. ISBN: 970-32-1010-4

Garrett H. 2002. Texas Trees. Lanham, MD. USA: Traylor Trade Publishing Lanham. ISBN-10: 9780891230762; ISBN-13: 978-0891230762

Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail JF, van Beek R. 2005. The influence of cellulose content on tensile strength in tree roots. Plant and Soil, 258: 1-9. https://doi.org/10.1007/s11104-005-8768-6

Gray DH, Ohashi H. 1983. Mechanics of fiber reinforcement in sand. Journal of Geotechnical and Geoenvironmental Engineering 109: 335-353. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)

Gray DH. Sotir RB. 1996. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control. pp. 35-37. New York: John Wiley & Sons. ISBN: 978-0-471-04978-4

Hassler M. 2018. Cordia boissieri. Catálogue of Life: 2019 annual checklist. <http://www.catalogueoflife.org/col/details/database/id/141> (accessed January 2018).

Jerome D. 2017. Quercus polymorpha. The IUCN Red List of Threatened Species 2017: e.T194221A2304665. http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T194221A2304665.en

Hatch SL, Gandhi KN, Brown LE. 1990. Checklist of the vascular plants of Texas. College Station: Texas Agricultural Experiment Station, Texas A&M University System.

Marmolejo J. 2000. Diversidad fúngica en dos ecosistemas forestales del estado de Nuevo León, México. Universidad Autónoma de Nuevo León. Facultad de Ciencias Forestales.

Maslin B. 2018a. Acacia farnesiana. Catalogue of Life, Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858 <http://worldwidewattle.com/speciesgallery/farnesiana.php> (accessed January 2018)

Maslin B. 2018b. Acacia berlandieri. Catalogue of Life, Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858 (accessed January 2018)

Maslin B. 2018c. Acacia rigidula. Catalogue of Life, Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858 <http://www.catalogueoflife.org/col/details/species/id/65da67dff9f935e9c231f0d327f9e15a/synonym/0c4d91f2bc6ba37ce52f442cdcb0b89a> (accessed January 2018)

Mattia C, Bischetti GB, Gentile F. 2005. Biotechnical characteristics of root systems of typical Mediterranean species. Plant and Soil 278: 23-32. DOI: https://doi.org/10.1007/s11104-005-7930-5

Montalvo-Arrieta J, Chávez-Cabello G, Velasco-Tapia F, Navarro de León I, 2010. Causes and effects of landslides in the Monterrey Metropolitan area, NE Mexico. Nova Science Publishers, Inc. 17-18.

Nixon K. 1998. Quercus rysophylla. The IUCN Red List of Threatened Species 1998: e.T30738A9575401. <http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T30738A9575401.en> (accessed January, 2018)

Operstein V, Frydman S. 2000. The influence of vegetation on soil strength. Ground Improvement 4: 81-89. DOI: https://doi.org/10.1680/grim.2000.4.2.81

Pollen N. 2007. Temporal and spatial variability in root reinforcement of steambanks: accounting for soil shear strength and moisture. Catena 69: 197-205. DOI: https://doi.org/10.1016/j.catena.2006.05.004

Pollen N, Simon A. 2005. Estimating the mechanical effects of riparian vegetation on steam bank stability using a fiber bundle model. Water Resources Research 41: 1-11. DOI: https://doi.org/10.1029/2004WR003801

Ramírez-Marcial N, González-Espinosa M. 1998. Arbutus xalapensis. The IUCN Red List of Threatened Species. <http://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T38918A10156114.en> (accessed January 2018)

Rzedowski J. 1978. Vegetación de México. México, DF: Limusa.

Sánchez-Castillo L. 2015. An integrated study of sediment related disaster prevent and erosion control for urbanized forest slopes in Nuevo León, México, 1-7, 36-39.

Sánchez-Castillo L, Kubota T, Cantu-Silva I, Yañez-Diaz M, Hasnawir, Pequeño-Ledezma M. 2017. Comparisons of the Root Mechanical Properties of three Native Mexican Tree Species for Soil Bioengieneering Practices. Botanical Sciences 95: 259-269.DOI: https://doi.org/10.17129/BOTSCI.802

Steel RGD, Torrie JH. 1980. Principles and Procedures of Statistics: a biometrical approach. New York: McGraw-Hill. ISBN: 0070609268, 9780070609266.

Roskov Y, Zarucchi J, Novoselova M, Bisby F. 2018. ILDIS World Database of Legumes (version 12, May 2014). In: Roskov Y, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, De Wever A, Nieukerken E, van Zarucchi J, Penev L. Eds.Species 2000 & ITIS Catalogue of Life, 31st July 2018. Digital resource at www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, the Netherlands. ISSN 2405-8858.

Tosi M. 2007. Root tensile strength relationships and their slope stability implications of three shrubs species in the Northern Apennines (Italy). Geomorphology 87: 268-283. DOI: https://doi.org/10.1016/j.geomorph.2006.09.019

Jerome, D. & Beckman, E. 2018. Quercus canbyi. The IUCN Red List of Threatened Species 2018: e.T78809316A78809335. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T78809316A78809335.en

Vergani C, Chiaradia EA, Bassanelli C, Bischetti GB. 2014. Root strength and density decay after felling in a Silver Fir-Norway Spruce stand in the Italian Alps. Plant and Soil 377: 6-81. DOI: https://doi.org/10.1007/s11104-013-1860-4

Yáñez MI, Cantú I, González H, Uvalle JI. 2014. Redistribución de la precipitación en tres especies arbustivas nativas y una plantación de Eucalypto del Noreste de México. Tecnología y Ciencias del Agua, 5: 71-84.

Published
2019-09-01
How to Cite
Zavala González, R., Cantú-Silva, I., Sánchez-Castillo, L., González-Rodríguez, H., Kubota, T., & Hasnawir, . (2019). Ten Native Tree Species for potential use in Soil Bioengineering in northeastern Mexico. Botanical Sciences, 97(3), 291-300. https://doi.org/10.17129/botsci.2131