Liberación de oxígeno radial por las raíces de las plantas nativas de humedales tropicales costeros de Veracruz en respuesta a diferentes condiciones de inundación

Evelyn Sánchez-Olivares, Jose Luis Marín-Muñiz, Maria Elizabeth Hernandez-Alarcón


Background: Radial oxygen release by wetland plants is a process that creates aerobic conditions in the sediment that enhance aerobic microbial activity. Such activity has a big impact on wetland environmental services. Little is known about radial oxygen release by native macrophytes of tropical wetlands.

Study site: Veracruz, Mexico

Research Questions: Which of the most abundant native macrophytes from tropical wetlands have the higher radial oxygen release? What is the effect of hydrological condition on radial oxygen release of the most abundant native wetlands plants of tropical wetlands?

Methods: Root production, root porosity and Oxygen radial release were measured in 7 native macrophytes of tropical wetlands in Veracruz. The macrophytes were grown under three hydrological conditions: capillarity, saturation and flooding.

Results: The species that produced more weight and volume of root (Pontederia Sagittata, Sagitaria lancifolia y Thalia geniculata) showed low radial oxygen released base on dry weight. Under flooding conditions, radial oxygen release per plant showed significant differences between the species, being Typha dominguensis the specie with the highest oxygen radial release (148 ±46 µmol O2 d-1) and Leersia ligularis the plant with the lowest radial oxygen release (22 ±46 µmol O2 d-1).

Conclusion: Flooding conditions decreased root volume and weight of native macrophytes from Veracruz wetlands, also increased root porosity and in general stimulated higher radial oxygen release per plant, with significant differences among the studied plants, indicating that radial oxygen release depend of plant phenological characteristics and the hydrological conditions.


Aquatic plants; hydric stress; oxygen diffusion; root porosity; sediment aeration

Full Text:

PDF (Español)


Armstrong W. 1971. Radial oxygen losses from intact rice roots as affected by distances for the apex, respiration and waterlogging. Physiologia Plantarum 7: 192-197. DOI:

Armstrong W. 1972. A Re-examination of the functional significance of aerenchyma. Physiologia Plantarum 27: 173-177. DOI:

Armstrong W, Armstrong J. 1988. Phragmites australis -a preliminary study of soil- oxidizing sites and internal gas transport pathways. New phytologist 108: 373-382. DOI:

Brix H. 1994. Functions of Macrophytes in Constructed Wetlands.Water Science and Technology 29: 71-78 DOI:

Chabbi A. 1999. Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies. New Phytologyst 144: 133-142. DOI:

Chabbi A, McKee KL, Mendelssohn IA. 2000. Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperacea) andconsequences for root metabolism. American Journal of Botany 87: 1081-1090. DOI:

Cronk JK, Fennesy MS. 2001. Wetland Plants: Biology and Ecology. Boca Raton, FL.: Lewis Publishers. ISBN 9781566703727

Cruz-Zamora ED. 2018. Caracterización fisicoquímica de de humedales naturales y perturbados. Facultad de Ingeniería Ambiental. Instituto Tecnológico de Álamo Temapache. Xoyotitla, Mpio. de Álamo Temapache, Ver., 48pp.

Díaz-Cordero G. 2012. El Cambio Climático. Ciencia y Sociedad 37: 227-240

Han C, Ren J, Tang H, Xu D, Xie X. 2016. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode. Science of the Total Environment 569-570: 1232-1240. DOI:

Hernández ME. 2016. Las bacterias metanotróficas y desnitrificantes en humedales de agua dulce en México: sus implicaciones en los servicios ambientales. In: Arena-Ortiz ML, Chiappa-Carrara X. comps. Microbiologia Ambiental en México. Yucatan, México: Universidad Nacional Autónoma de México, 82-92. ISBN: 978-607-02-9617-8

Jackson MB, Colmer TD. 2005. Response and adaptation by plants to flooding stress. Annals of Botany 96: 501-505.

Keeley JE. 1979. Population differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica. Ecological Monographs 49: 89-108. DOI:

Kludze H, DeLAune RD, Patrick WH 1994. A colorimetric method for assaying dissolved oxygen loss from container-grown rice roots. Agronomy Journal 86: 483-487. ISSN: 0002-1962

Lai W, Zhang Y, Chen Z. 2012. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecological Engineering 39: 24-30. DOI:

Lemoine DG, Mermillod-Blondin F. 2012. The ability of aquatic macrophytes to increase root porosity and radial oxygen loss determines their resistance to sediment anoxia. Aquatic Ecology 46: 191-200. DOI:

Malvárez IA, Fabián R. 2004. Bases ecológicas para la clasificación e inventario de humedales en Argentina. Buenos Aires, Argentina: ISBN: 9872157502

Matsui T, Tsuchiya T. 2006. A method to estimate practical radial oxygen loss of wetland plant roots. Plant and Soil 279: 119-128. DOI:

Matsui T, Tsuchiya T. 2008. Interspecific differences in radial oxygen loss from the roots of three Typha species. Limnology. 9: 207-211 DOI:

Mei XQ, Ye ZH, Wong MH. 2009. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environmental Pollution 157: 2550-2557. DOI:

Mitsch WJ, Gosselink JG. 2015. Wetlands. Wiley. ISBN: 978-1-118-67682-0

Travieso-Bello AC, Moreno-Casasola P, Campos A. 2005. Efecto de diferentes manejos pecuarios sobre el suelo y la vegetación en humedales transformados a pastizales. Interciencia 30: 12-18.

Moreno-Casasola P, Cejudo-Espinosa E, Capistrán-Barradas A, Infante-Mata D, López-Rosas H, Castillo-Campos G, Pale-Pale J, Campos-Cascaredo A. 2010. Composición florística, diversidad y ecología de humedales herbáceos emergentes en la planicie costera central de Veracruz. Boletín de la sociedad botánica de México 87: 29-50.

Sasikala S, Tanaka, Wah HSY, Jinadasa KBSN. 2009. Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms. Ecological Engineering 35: 410-417. DOI:

Sorrell BK. 1999. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant, Cell and Environment 22: 1587-1593. DOI:

Van-Noordwijk M, Brouwer G. 1988. Quantification of air-filled root porosity: A comparison of two methods. Plant and Soil, 111: 255-258.

Wiessner A, Kuschk P, Stottmeister U. 2002. Oxygen Release by Roots of Typha latifolia and Juncus effuses in Laboratory Hydroponic Systems. Acta Biotechnol. 22: 209-216.

Zhang J, Wu H, Hu Z, Liang S, Fan J. 2014. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle. Environmental Science and Pollution Research, 21: 9709-9716. DOI:


Article Metrics

Abstract Views.
Total number of Abstract Views for this article.
a description of the source 103
This journal

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Botanical Sciences is an international peer-reviewed journal that publishes scientific papers in plant sciences. The arguments, figures / schemes / photographs, quality and the general contents of this publication are full responsibility of the authors, and not commit the Editor- in-Chief or the Sociedad Botánica de México.

Botanical Sciences year 8, Vol. 97, No. 1, January-March 2019. Quarterly publication edited and published by Sociedad Botánica de México A.C. ( Editor in Chief Salvador Arias, Jardín Botánico, Instituto de Biología, 3er Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510. Reserves of Rights to the Exclusive Use No. 04-2017-040716054100-203, digital-ISSN 2007-4476, both granted by the Instituto Nacional del Derecho de Autor. Responsible for updating the page Pedro López, email:, eScire. Last update March 11, 2019.

Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



website counter