The biosynthesis of pharmacologically active compounds in Calophyllum brasiliense seedlings is influenced by calcium and potassium under hydroponic conditions

  • Jorge Ivan Castillo-Arellano Faculty of Sciences, National University Autonomous of Mexico, Mexico City
  • Helia Reyna Osuna-Fernández Faculty of Sciences, National University Autonomous of Mexico, Mexico City
  • Marius Mumbru-Massip University of Barcelona
  • Rocío Gómez-Cancino Technology University of Mixteca
  • Ricardo Reyes-Chilpa Institute of Chemistry, Natural Products Deparment, National University Autonomous of Mexico
Keywords: Apetalic acid, calanolides, Calophyllum brasiliense, hydroponic, soil nutrients


Background: The influence of soil nutrients on biosynthesis of secondary metabolites from tropical trees has been poorly investigated.

Questions: Does the deprival of Ca2+ and K+ influence the production of pharmacologically active compounds in the seedling of Calophyllum brasiliense?

Species study: Calophyllum brasiliense Cambess.

Study site: Los Tuxtlas, Veracruz, Mexico; November 2005 to November 2009.

Methods: The seedlings were obtained from seeds and subjected to different hydroponic treatments: 1) modified Hoagland solution (MHS), 2) MHS-Ca2+, and 3) MHS-K+. Growth, height, foliar biomass, and HPLC analysis were performed after 7 months.

Results: Under hydroponic conditions Ca2+ and K+ deficiency induced the mortality of 53 % and 28 % of the seedlings, respectively. The foliar biomass, and plant height of the survivors were also drastically reduced. MHS-K+ treatment induced a 15, 4.2 and 4.3-fold decrease for calanolides B, C, and apetalic acid in the leaves, respectively. MHS-Ca2+ treatment induced a decrease of 4.3, and 2.4-fold for calanolide B, and C, respectively.

Conclusion: Ca2+ is essential for survival of C. brasiliense seedlings under hydroponic conditions, Ca2+ and K+ are critical for growth, foliar production, and biosynthesis of apetalic acid, and calanolide B.


Download data is not yet available.

Author Biographies

Jorge Ivan Castillo-Arellano, Faculty of Sciences, National University Autonomous of Mexico, Mexico City

Depto. Biología Celular. Profesor de asignatura.


Helia Reyna Osuna-Fernández, Faculty of Sciences, National University Autonomous of Mexico, Mexico City
Depto. Ecología y Recursos Naturales. Profesor Titular A.
Marius Mumbru-Massip, University of Barcelona
Professor of Pharmacy in Faculty of Pharmacy, University of Barcelona
Rocío Gómez-Cancino, Technology University of Mixteca
Professor CONACyT in Technology University of Mixteca
Ricardo Reyes-Chilpa, Institute of Chemistry, Natural Products Deparment, National University Autonomous of Mexico
Natural Products Deparment, Investigador Titular B
The biosynthesis of pharmacologically active compounds in <em>Calophyllum brasiliense</em> seedlings is influenced by calcium and potassium under hydroponic conditions


Ahmad P, Abdel A, Abd_Allah E, Hashem A, Sarwat M, Anjun N, Gucel S. 2016. Calcium and Potassium Supplementation Enhanced Growth, Osmolyte Secondary Metabolite Production, and Enzymatic Antioxidant Machinery in Cadmium-Exposed Chickpea (Cicer arietinum L.). Frontiers in Plant Science 7. DOI:

Ajithabai M, Rameshkumar B, Jayakumar G, Luxmi V, Mangalam S, Ajaikumar, Gayathri P. 2012. Decipic acid and 12-acetyl apetalic acid from Calophyllum decipiens. Indian Journal Chemistry 51: 393-397

Alaoui C, Kasrati A, Bekkouche K, Hassani L, Wohlmuth H, Leach D, Abbad A. 2014. Cultivation and the application of inorganic fertilizer modifies essential oil composition in two Moroccan species of Thymus. Industrial Crops and Products 62: 113-118. DOI:

Bernabé-Antonio A, Estrada-Zúñiga M, Buendía-González L, Reyes-Chilpa R, Chávez-Avila V, Cruz-Sosa F. 2010. Production of anti-HIV-1 calanolides in a callus culture of Calophyllum brasiliense (Cambes). Plant Cell Tissue Organ Culture 103: 33-40. DOI:

Boeger M, Wisniewski C. 2003. Comparação da morfologia foliar de espécies arbóreas de três estádios sucessionais distintos de floresta ombrófila densa (Floresta Atlântica) no Sul do Brasil. Brazilian Journal of Botany 26: 61-72. DOI:

Borges C, Minatel I, Gomez-Gomez H, Pereira L. 2017. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. Medicinal Plants and Environmental Challenges. DOI:

Burney O, Jacobs D. 2011. Ungulate herbivory of regenerating conifers in relation to foliar nutrition and terpenoid production. Forest Ecology Management 262: 1834-1845. DOI:

Butler M. 2008. Natural products to drugs: natural product-derived compounds in clinical trials. Natural Products Reports 25: 475. DOI:

Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V. 2015. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. International Journal of Molecular Sciences 16: 26378-26394 DOI:

Churngchow N, Rattarasarn M. 2001. Biosynthesis of scopoletin in Hevea brasiliensis leaves inoculated with Phytophthora palmivora. Journal of Plant Physiology 158: 875-882. DOI:

Cornelissen T, Stiling P. 2006. Responses of different herbivore guilds to nutrient addition and natural enemy exclusion. Ecoscience 13: 66-74. DOI:[66:RODHGT]2.0.CO;2

Davies MJ, Atkinson CJ, Burns C, Woolley JG, Hips NA, Arroo RRJ, Dungey N, Robinson T, Brown P, Flockart I, Hill C, Smith L, Bentley S. 2009. Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua. Annals of Botany 104: 315-323. DOI:

De Carvalho L, Amaral A, Davide A . 2006. Classificação de sementes florestais quanto ao comportamento no armazenamento. Revista Brasileira de Sementes 28: 15-25 DOI:

Desjardins A. 2008. Natural product chemistry meets genetics: When is a genotype a chemotype? Journal of Agricultural and Food Chemistry 56: 7587-7592 DOI:

El Gendy A, El Gohary A, Omer E, Hendawy S, Hussein M, Petrova V, Stanchev I. 2015. Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products 69: 167-174. DOI: 10.1016/j.indcrop.2015.02.023

Elwers S, Zambrano A, Rohsius C, Lieberei R. 2009. Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology 229: 937-948. DOI:

Fernández-Hinojosa G, Johnson-Barria M .1986. Fisiología vegetal experimental. San José, Costa Rica: Instituto Interamericano de Cooperación para la agricultura. ISBN: 9789290390664

Fischer E, Dos Santos F. 2001. Demography, phenology and sex of Calophyllum brasiliense (Clusiaceae) trees in the Atlantic forst. Journal of Tropical Ecology 17: 903-909. DOI:

Forkner R, Hunter M. 2000. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81: 1588-1600. DOI:[1588:WGUMCD]2.0.CO;2

García-Zebadúa J, Reyes-Chilpa R, Huerta-Reyes M, Castillo-Arellano J, Santillán-Hernández S, Vázquez-Astudillo B, Mendoza-Espinoza J. 2014. Vitae 21:126-145

Glynn C, Herms D, Orians C, Hansen R, Larsson S. 2007. Testing the growth-differentiation balance hypothesis: Dynamic responses of willows to nutrient availability. New Phytologist 176: 623-634. DOI:

Guevara S, Laborde D, Sánchez-Ríos G. 2006. Los Tuxtlas: El paisaje de la sierra. México: Instituto de Ecología. ISBN: 970-709-043-X, 9789707090439

Hua J, Moon T, Hong T, Park K, Son J, Chang H. 2008. 5-Methoxy-8-(2-hydroxy-3-buthoxy-3-methylbutyloxy)-psoralen isolated from Angelica dahurica inhibits cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Archives of Pharmacal Research 31: 617-621. DOI:

Huber M, Epping J, Schulze G, Fricke J. Aziz Z, Brillatz T, Swyers M, Köllner T, Vogel H, Hammerbacher A, Triebwasser-Freese D, Robert C, Verhoeven K, Preite V, Gershenzon J, Erb M. 2016. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLOS Biology 14. DOI:

Huerta-Reyes M, Basualdo M, Abe F, Jimenez-Estrada M, Soler C, Reyes-Chilpa R. 2004. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biological and Pharmaceutical Bulletin 27: 1471-1475. DOI:

INEGI. 2009. [Instituto Nacional de Geografía Estadística] México. (accessed 20 September, 2002)

Kashman Y, Gustafson K, Fuller R, Cardellina II J, McMahon J, Currens M, Buckheit Jr R, Hughues S, Cragg G, Boyd R. 1992. HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. Journal of Medicinal Chemistry 35: 2735-2743. DOI:

Kováčik J, Klejdus B. 2014. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chemistry 142: 334-341. DOI:

Kováčik J, Klejdus B, Babula P, Jarošová M. 2014. Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants. Journal of Plant Physiology 171: 260-268. DOI:

Lattanzio V, Cardinali A, Ruta C, Morone F, Lattanzio V, Linsalata V, Cicco N. 2009. Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environmental and Experimental Botany 65: 54-62. DOI:

Lauchert U, Wild A. 1995. Studies on the Correlation of Putrescine and Potassium Contents in the Needles of Spruce Trees. Journal of Plant Physiology 147: 267-269. DOI:

Laure F, Raharivelomanana P, Butaud J, Bianchini J, Gaydou E. 2008. Screening of anti-HIV-1 inophyllums by HPLC-DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands. Analytica Chimica Acta 624:147-153. DOI:

Lim T, Lim Y, Yule C. 2017. Distribution and caracterisation of phenolic compounds in Macaranga pruinosa and associated soils in a tropical peat swamp forest. Journal of Tropical Forest Science 29:509-518. DOI:

Liu W, Zhu D, Liu DW, Liu DH, Geng M, Zhou W, Mi W, Yang T, Hamilton D. 2010. Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium Ramat. Journal of Plant Nutrition 33: 240-254. DOI:

Martinez-Sanchez J. 2006. Pasture trees in tropical Mexico: the effect of soil nutrients on seedling growth. Revista de Biología Tropical 54: 363-370

Marx E, Hart J. 1996. Soil test interpretation guide. No. 1478. Oregon: Oregon State University Extension Service. (Acceced 12-29-2018)

McKee T, Covington C, Fuller R, Bokesch H, Young S, Cardellina J, Kadushin M, Soejarto D, Stevens P, Cragg G, Boyd M. 1998. Pyranocoumarins from tropical species of the genus Calophyllum: A chemotaxonomic study of extracts in the National Cancer Institute Collection. Journal of Natural Products 61: 1252-1256. DOI:

Mendonça-Freitas M, Monnerat P, Curcino-Vieira J. 2008. Mineral deficiency in Passiflora alata curtis: Vitexin bioproduction. Journal of Plant Nutrition 31: 1844-1854. DOI:

Milošević T, Milošević N, Glišić I, Bošković-Rakocević L, Milivojević J. 2013. Fertilization effect on trees and fruits characteristics and leaf nutrient status of apricots which are grown at Cacak region (Serbia). Scientia Horticulturae (Amsterdam) 164: 112-123. DOI:

Muzika R, Pregitzer K, Hanover J. 1989. Changes in terpene production following nitrogen fertilization of grand fir (Abies grandis (Dougl.) Lindl.) seedlings. Oecologia 80: 485-489. DOI:

Nerg A, Kainulainen P, Vuorinen M, Hanso M, Holopainen J, Turkela T. 1994. Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytologist 128:703-713. DOI:

Pal P, Kumar R, Guleria V, Mahajan M, Prasad R, Pathania V, Gill B, Singh D, Chand G, Singh B, Singh R and Singh P. 2015. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biology 15. DOI:

Pavarini DP, Pavarini SP, Niehues M, Lopes NP. 2012. Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology 176: 5-16. DOI:

Akula R, Ravishankar G. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6: 1720-1731 DOI:

Resende A, Furtini-Neto A, Curi N, Muniz J, Faria M. 2000. Accumulation and nutritional efficiency of macronutrients in forest species of different successional groups in response to phosphorus fertilizer application. Ciência e Agrotecnologia 24: 160-173

Reyes-Chilpa R, Estrada-Muñiz E, Ramírez-Apan T, Amekraz B, Aumelas A, Jankowski C, Vázquez-Torres M. 2004. Cytotoxic effects of mammea type coumarins from Calophyllum brasiliense. Life Sciences 75:1635-1647. DOI:

Reyes-Chilpa R, Estrada-Muñiz E, Vega-Ávila E, Abe F, Kinjo J, Hernández-Ortega S. 2008. Trypanocidal constituents in plants. 7. Mammea-type coumarins. Memórias do Instituto Oswaldo Cruz 103: 431-436. DOI:

Sampaio B, Edrada-Ebel R, Da Costa F. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports 6: 29265 DOI:

Sánchez-Sampedro M, Fernández-Tárrago J, Corchete P. 2005. Enhanced Silymarin accumulation is related to calcium deprivation in cell suspension cultures of Silybum marianum (L.) Gaertn. Journal of Plant Physiology 162: 1177-1182. DOI:

Shaw T, Moore J, Marshall J. 1998. Root chemistry of Douglas-fir seedlings grown under different nitrogen and potassium regimes. Canadian Journal of Forest Research 28: 1566-1573. DOI:

Shen Y, Wang L, Khalil A, Kuo Y. 2004. Chromanones and dihydrocoumarins from Calophyllum blancoi. Chemical and Pharmaceutical Bulletin (Tokyo) 52: 402-405. DOI:

Silveira S, Cordeiro-Silva R, Degenhardt-Goldbach J, Quoirin M. 2016. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segment. Brazilian Journal of Biology 76: 656-663. DOI:

Taiz L, Zeiger E . 2010. Plant Physiology. Sinauer Associates Inc. ISBN: 978-0-87893-866-7.

Verma N, Shukla S. 2015. Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants 2: 105-113:

Vozzo J. 2002. Tropical Tree Seed Manual. Native Plants (Vol. 5). DOI:

Zangerl A, Berenbaum M .1987. Furanocoumarins in wild parsnip: effects of photosynthetically active radiation, ultraviolet light, and nutrients. Ecology 68: 516-520. DOI:

Zavaleta-Mancera H. 2011. Leaf structure of two chemotypes of Calophyllum brasiliense from Mexico. Microscopy and Microanalysis 17: 340-341 DOI:

How to Cite
Castillo-Arellano, J. I., Osuna-Fernández, H. R., Mumbru-Massip, M., Gómez-Cancino, R., & Reyes-Chilpa, R. (2019). The biosynthesis of pharmacologically active compounds in <em>Calophyllum brasiliense</em&gt; seedlings is influenced by calcium and potassium under hydroponic conditions. Botanical Sciences, 97(1), 89-99.