Functional responses of recently emerged seedlings of an endemic Mexican oak (Quercus eduardii) under climate change conditions

Ernesto I. Badano, Francisco A. Guerra-Coss, Sandra M. Gelviz-Gelvez, Joel Flores, Pablo Delgado-Sánchez


Background: Climate change will increase temperature and reduce rainfall across temperate forests of Mexico. This can alter tree establishment dynamics within forest and in neighbouring man-made clearings.

Hypotheses: Climate change will reduce emergence and survival of tree seedlings, and surviving plants will display functional responses matching with these changes. These effects should be more noticeable in clearings due to the lack of canopy cover.

Studied species: Quercus eduardii (Fagaceae, section Lobatae) an oak species endemic to Mexico.

Study site and years of study: Tree growing season 2015-2016 (rainy season) in a mature oak forest and a neighbouring clearing in Sierra de Álvarez, state of San Luis Potosí.

Methods: In both habitats, we established control plots (under current climatic conditions) and climate change simulation plots (increased temperature and reduced rainfall). At the beginning of the growing season, we sowed acorns of Q. eduardii in these plots and monitored the emergence, survival and growth of seedlings. At the end of the growing season, we assessed functional responses on surviving seedlings.

Results: Seedling emergence and survival were lower in climate change plots from both habitats. However, differences in survival between climate treatments were larger within the forest. Seedlings from climate change plots displayed functional responses indicating higher levels of thermal and water stress.

Conclusions: This study indicates that climate change will constrain tree recruitment in Mexican oak forests. However, contrary to our expectations, it seems that these effects will be higher within forests than in man-made clearings.


abandoned fields; Climate change; Forest ecosystems; Functional responses; Oak seedlings

Full Text:



Alfonso-Corrado C, Clark-Tapia R, Mendoza A. 2007. Demography and management of two clonal oaks: Quercus eduardii and Q. potosina (Fagaceae) in central México. Forest Ecology and Management 251: 129-141. DOI: 10.1016/j.foreco.2006.11.004

Aragón-Gastélum JL, Flores J, Yáñez-Espinosa L, Badano E, Ramírez-Tobías HM, Rodas-Ortíz JP, González-Salvatierra C. 2014. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora 209: 499-503. DOI: 10.1016/j.flora.2014.06.002

Aranda I, Castro L, Pardos M, Gil L, Pardos JA. 2005. Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. Forest Ecology and Management 210: 117-129. DOI: 10.1016/j.foreco.2005.02.012

Badano EI, Samour-Nieva OR, Flores J, Douterlungne D. 2015. Microclimate and seeding predation as drivers of tree recruitment in human-disturbed oak forests. Forest Ecology and Management 356: 93-100. DOI: 10.1016/j.foreco.2015.07.031

Bahmani SMHG, Attarod P, Bayramzadeh V, Ahmadi MT, Radmehr A. 2012. Throughfall, stemflow, and rainfall interception in a natural pure forest of chestnut-leaved oak (Quercus castaneifolia C.A. Mey.) in the Caspian forest of Iran. Annals of Forest Research 55: 197-206. DOI: 10.15287/afr.2012.60

Batllori E, Camarero JJ, Ninot JM, Gutiérrez E. 2009. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones: Implications and potential responses to climate warming. Global Ecology and Biogeography 18: 460-472. DOI: 10.1111/j.1466-8238.2009.00464.x

Bewley JD, Bradford K, Hilhorst H, Nonogaki H. 2013. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed. Dordrecht: Springer. DOI: 10.1007/978-1-4614-4693-4

Broncano MJ, Riba M, Retana J. 1998. Seed germination and seedling performance of two Mediterranean tree species, holm oak (Quercus ilex L.) and Aleppo pine (Pinus halepensis Mill.): A multifactor experimental approach. Plant Ecology 138: 17-26. DOI: 10.1023/A:1009784215900

Chabot BF, Hicks DJ. 1982. The ecology of leaf life spans. Annual Review of Ecology, Evolution and Systematics 13: 229-259. DOI: 10.1146/

Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree1 MT, Turner BL, Hubbell SP. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80-82. DOI: 10.1038/nature05747

Fernández-Eguiarte A, Romero-Centeno R, Zavala-Hidalgo J. 2012. Atlas Climático Digital de México y Áreas Adyacentes, Vol. 1. Mexico City: Universidad Nacional Autónoma de México. <> (accessed September 26, 2017)

Fernández-Eguiarte A, Romero-Centeno R, Zavala-Hidalgo J, Kucieńska B. 2014. Atlas Climático Digital de México y Áreas Adyacentes, Vol. 2. Mexico City: Universidad Nacional Autónoma de México. <> (accessed September 26, 2017)

Fu YH, Campioli M, Deckmyn G, Janssens IA. 2013. Sensitivity of leaf unfolding to experimental warming in three temperate tree species. Agricultural and Forest Meteorology 181: 125-132. DOI: 10.1016/j.agrformet.2013.07.016

Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías J, Quero JL, Castro J, Zamora R, Marañón T. 2008. Oak seedling survival and growth along resource gradients in Mediterranean forests: Implications for regeneration in current and future environmental scenarios. Oikos 117: 1683-1699. DOI: 10.1111/j.1600-0706.2008.16814.x

Gómez-Mendoza L, Arriaga L. 2007. Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology 21: 1545-1555. DOI: 10.1111/j.1523-1739.2007.00814.x

Gond V, de Pury DGG, Veroustraete F, Ceulemans R. 1999. Seasonal variations in leaf area index, leaf chlorophyll, and water content: Scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree Physiology 19: 673-679. DOI: 10.1093/treephys/19.10.673

González-Salvatierra C, Badano EI, Flores J, Rodas JP. 2013. Shade shelters increase survival and photosynthetic performance of oak transplants at abandoned fields in semi-arid climates. Journal of Forest Research 24: 23-28. DOI: 10.1007/s11676-013-0321-5

Gribko LS, Jones WE. 1995. Test of the float method of assessing northern red oak acorn condition. Tree Planters’ Notes 46: 143-147.

Hanson PJ, Weltzin JF. 2000. Drought disturbance from climate change: Response of United States forests. Science of the Total Environment 262: 205-220. DOI: 10.1016/S0048-9697(00)00523-4

Hardwick-Jones R, Westra S, Sharma A. 2010. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophysical Research Letters 37: L22805. DOI: 10.1029/2010GL045081

Kettle CJ. 2012. Seeding ecological restoration of tropical forests: Priority setting under REDD+. Biological Conservation 154: 34-41. DOI: 10.1016/j.biocon.2012.03.016

Kleinbaum DG, Klein M. 2012. Survival Analysis, 3rd ed. New York: Springer. DOI: 10.1007/978-1-4419-6646-9

Kutner MH, Nachtsheim CJ, Neter J, Li W. 2005. Applied Linear Statistical Models, 5th ed. New York: McGraw-Hill. ISBN-13: 978-0071122214

Li Q, Ma K. 2003. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecology and Management 176: 133-146. DOI: 10.1016/S0378-1127(02)00274-8

Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709. DOI: 10.1016/j.foreco.2009.09.023

Lloret F, Peñuelas J, Ogaya R. 2004. Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. Journal of Vegetation Science 15: 237-244. DOI: 10.1111/j.1654-1103.2004.tb02258.x

Mahall BE, Tyler CM, Cole ES, Mata C. 2009. A comparative study of oak (Quercus, Fagaceae) seedling physiology during summer drought in southern California. American Journal of Botany 96: 751-761. DOI: 10.3732/ajb.0800247

Malhi Y, Aragão LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P. 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of USA 106: 20610-20615. DOI: 10.1073/pnas.0804619106

Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones CG, Jones MH, Lévesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology 3: 20-32. DOI: 10.1111/j.1365-2486.1997.gcb136.x

Maxwell K, Johnson G. 2000. Chlorophyll fluorescence - A practical guide. Journal of Experimental Botany 51: 659-668. DOI: 10.1093/jexbot/51.345.659

Ordiales-Plaza R. 2000. Midebmp, Version 4.2. Almería: Estación Experimental de Zonas Áridas.

Parlange MB, Cahill AT, Nielsen DR, Hopmans JW, Wendroth O. 1998. Review of heat and water movement in field soils. Soil and Tillage Research 47: 5-10. DOI: 10.1016/S0167-1987(98)00066-X

Pennington RT, Lavin M, Oliveira-Filho A. 2009. Woody plant diversity, evolution, and ecology in the tropics: Perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution and Systematics 40: 437-57. DOI: 10.1146/annurev.ecolsys.110308.120327

Piper FI, Fajardo A, Cavieres LA. 2013. Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes. Perspectives in Plant Ecology, Evolution and Systematics 15: 97-105. DOI: 10.1016/j.ppees.2013.02.003

Puerta-Piñero C, Gómez JM, Valladares F. 2007. Irradiance and oak seedling survival and growth in a heterogeneous environment. Forest Ecology and Management 242: 462-469. DOI: 10.1016/j.foreco.2007.01.079

Quero JL, Villar R, Marañón T, Zamora R. 2006. Interactions of drought and shade effects on seedlings of four Quercus species: Physiological and structural leaf responses. New Phytologist 170: 819-834. DOI: 10.1111/j.1469-8137.2006.01713.x

Ramírez-Valiente JA, Valladares F, Gil L, Aranda I. 2009. Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology and Management 257: 1676-1683. DOI: 10.1016/j.foreco.2009.01.024

Ramos-Palacios CR, Badano EI, Flores J, Flores-Cano J, Flores-Flores JL. 2014. Distribution patterns of acorns after primary dispersion in a fragmented oak forest and their consequences on predators and dispersers. European Journal of Forest Research 133: 391-404. DOI: 10.1007/s10342-013-0771-5

Valladares F, Sánchez-Gómez D. 2006. Ecophysiological traits associated with drought in Mediterranean tree seedlings: Individual responses versus interspecific trends in eleven species. Plant Biology 8: 688-697. DOI: 10.1055/s-2006-924107

Vieira DLM, Scariot A. 2006. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology 14: 11-20. DOI: 10.1111/j.1526-100X.2006.00100.x

Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17: 2145-2161. DOI: 10.1111/j.1365-2486.2010.02368.x

Xu ZZ, Zhou GS. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224: 1080-1090. DOI:

Yahdjian L, Sala OE. 2002. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133: 95-101. DOI: 10.1007/s00442-002-1024-3

You G, Zhang Y, Schaefer D, Sha L, Liu Y, Gong H, Tan Z, Lu Z, Wu C, Xie Y. 2013. Observed air/soil temperature trends in open land and understory of a subtropical mountain forest, SW China. International Journal of Climatology 33: 1308-1316. DOI: 10.1002/joc.3494

Zavala-Chávez F. 2001. Introducción a la Ecología de la Regeneración Natural de Encinos. Texcoco: Universidad Autónoma Chapingo. ISBN: 9688847801 9789688847800

Zavala-Chávez F, García-Moya E. 1996. Frutos y Semillas de Encinos. Texcoco: Universidad Autónoma Chapingo.

Zavala-Chávez F, García-Sánchez F. 1999. Aspectos fisonómicos de los encinares de la Sierra de Álvarez, San Luis Potosí, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente 51: 27-35.


Article Metrics

Abstract Views.
Total number of Abstract Views for this article.
a description of the source 650
This journal

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Botanical Sciences is an international peer-reviewed journal that publishes scientific papers in plant sciences. The arguments, figures / schemes / photographs, quality and the general contents of this publication are full responsibility of the authors, and not commit the Editor- in-Chief or the Sociedad Botánica de México.

Botanical Sciences year 8, Vol. 97, No. 1, January-March 2019. Quarterly publication edited and published by Sociedad Botánica de México A.C. ( Editor in Chief Salvador Arias, Jardín Botánico, Instituto de Biología, 3er Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510. Reserves of Rights to the Exclusive Use No. 04-2017-040716054100-203, digital-ISSN 2007-4476, both granted by the Instituto Nacional del Derecho de Autor. Responsible for updating the page Pedro López, email:, eScire. Last update March 11, 2019.

Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



website counter