Phylogenetic position of Neotropical Bursera-specialist mistletoes: the evolution of deciduousness and succulent leaves in Psittacanthus (Loranthaceae)

Andrés Ernesto Ortiz-Rodriguez, Eydi Yanina Guerrero, Juan Francisco Ornelas

Abstract


Background: The phylogenetic relationships of the Bursera-host specialist Psittacanthus nudus, P. palmeri and P. sonorae (Loranthaceae) remain uncertain. These mistletoe species exhibit morphological and phenological innovations probably related to their dry habitats, so that determining their phylogenetic position is key to the understanding of factors associated with the morphological evolution within Psittacanthus.

Questions: (1) Is the evolution of some morphological innovations in the Bursera-host specialists associated with the ecological conditions linked to host diversification? (2) Does time of diversification in both lineages coincide?

Study species: Fourteen species of Psittacanthus.

Methods: Sequences of nuclear (ITS) and plastid (trnL-trnF) markers are analyzed with Bayesian inference, maximum likelihood and maximum parsimony methods, and molecular dating under a Bayesian approach estimated to elucidate the phylogenetic position and divergence timing of the Bursera-host specialists.

Results: The Bursera-host specialists form a strongly supported clade, named here the ‘Bursera group’. The divergence time for the Bursera-host specialists was estimated at 7.89 Ma. Interestingly, phylogenetic relationships between P. nudus and P. palmeri, as currently circumscribed, were not fully resolved, making P. palmeri paraphyletic.

Conclusions: Based on these results, the plants collected by type locality of P. nudus in Honduras should be named P. palmeri. The seasonal deciduousness of P. palmeri (including P. nudus) and morphology of P. sonorae (small size, fleshy leaves) are clearly adaptations to dry ecosystems where these species have lived for a long time. In parallel, the evolutionary history of these mistletoes seems to be correlated with the evolutionary history and diversification patterns of Bursera.


Keywords


Bursera; divergence time; Honduras; ITS; Loranthaceae; mistletoes; molecular clock; Neotropics; phylogeny; Psittacanthus; systematics; trnL-trnF

Full Text:

PDF

References


Amico, GC, Nickrent DL. 2009. Population structure and phylogeography of the mistletoes Tristerix corymbosus and T. aphyllus (Loranthaceae) using chloroplast DNA sequence variation. American Journal of Botany 96: 1571–1580. DOI: 10.3732/ajb.0800302

Amico GC, Vidal-Russell R, Nickrent DL. 2007. Phylogenetic relationships and ecological speciation in the mistletoe Tristerix (Loranthaceae): the influence of pollinators, dispersers, and hosts. American Journal of Botany 94: 558–567. DOI: 10.3732/ajb.94.4.558

Barlow BA, Wiens D. 1973. The classification of the generic segregates of Phrygilanthus (=Notanthera) of the Loranthaceae. Brittonia 25: 26–39. DOI: http://www.jstor.org/stable/2805488

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. DOI: 10.1038/nmeth.2109

De Nova A, Medina R, Montero JC, Weeks A, Rosell JA, Olson ME, Eguiarte LE, Magallón S. 2012. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales). New Phytologist 193: 276–287. DOI: 10.1111/j.1469-8137.2011.03909.x

Díaz Infante S, Lara C, Arizmendi MC, Eguiarte LE, Ornelas JF. 2016. Reproductive ecology and isolation of Psittacanthus calyculatus and P. auriculatus mistletoes (Loranthaceae). PeerJ 4: e2491. DOI: 10.7717/peerj.2491

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214–221. DOI: 10.1186/1471-2148-7-214

Glatzel G, Richter H, Devkota MP, Amico G, Lin R, Grabner M, Barlow BA. 2017. Foliar habit in mistletoe-host associations. Botany 95: 219–229. DOI: 10.1139/cjb-2016-0238

Goloboff P. 1993. Nona: A tree searching program. Program and documentation available at: http://www.cladistics.com/Downloads.html

Hudson RR. 1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7: 1–44

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754–755. DOI: 10.1093/bioinformatics/17.8.754

Kay KM, Whittall JB, Hodges SA. 2006. A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evolutionary Biology 6: 36–44. DOI: 10.1186/1471-2148-6-36

Kuijt J. 1971. Transfer of Phrygilanthus sonorae to Psittacanthus (Loranthaceae). Madroño 21: 13–14. DOI: http://www.jstor.org/stable/41423743

Kuijt J. 1973. Further evidence for the systematic position of Psittacanthus sonorae (Loranthaceae). Madroño 22: 177–185. DOI: http://www.jstor.org/stable/41426036

Kuijt J. 1981. Inflorescence morphology of Loranthaceae –an evolutionary synthesis. Blumea 27: 1–73. DOI: http://www.repository.naturalis.nl/document/565303

Kuijt J. 2009. Monograph of Psittacanthus (Loranthaceae). Systematic Botany Monographs 86: 1–362. DOI: http://www.jstor.org/stable/25592351

Kuijt J. 2014. Five new species, one new name, and transfers in Neotropical mistletoes (Loranthaceae), miscellaneous notes, 61–68. Novon 23: 176–186. DOI: 10.3417/2012042

Kuijt J, Feuer S. 1982. A re-evaluation of Phrygilanthus nudus (Loranthaceae). Brittonia 34: 42–47. DOI: 10.2307/2806399

Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis, version 3.01. Available at: http://mesquiteproject.org.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1–8. Washington, DC: Institute of Electrical and Electronics Engineers (IEEE), 2010.

Molina A. 1952. Nuevas plantas de Nicaragua y Honduras. Ceiba 3: 91–97.

Nixon KC. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407–414. DOI: 10.1111/j.1096-0031.1999.tb00277.x

Nixon KC. 1999–2002. WinClada ver. 1.0000. Ithaca, New York: Published by the author. Available at: http://www.cladistics.com/

Ornelas JF, Gándara E, Vásquez-Aguilar AA, Ramírez-Barahona S, Ortiz-Rodriguez AE, González C, Mejía Saules MT, Ruiz-Sanchez E. 2016. A mistletoe tale: postglacial invasion of Psittacanthus schiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling. BMC Evolutionary Biology 16: 78. DOI: 10.1186/s12862-016-0648-6

Pérez-Crespo MJ, Ornelas JF, González-Rodríguez A, Ruiz-Sanchez E, Vásquez-Aguilar AA, Ramírez-Barahona S. 2017. Phylogeography and population differentiation in the Psittacanthus calyculatus (Loranthaceae) mistletoe: a complex scenario of climate-volcanism interaction along the Trans-Mexican Volcanic Belt. Journal of Biogeography 44: 2501–2514. DOI: 10.1111/jbi.13070

Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. DOI: 10.1093/molbev/msn083

Rambaut A. 2007. Se-Al: Sequence Alignment editor, version 2.0a11. Department of Zoology, University of Oxford, Oxford, U.K.

Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM. 2001. Rapid diversification of a species-rich genus of Neotropical rain forest trees. Science 293: 2242–2245. DOI: 10.1126/science.1061421

Ronquist F, Huelsenbeck J. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. DOI: 10.1093/bioinformatics/btg180

Stamatakis A. 2014. RAxML Version 8: A tool for phylogenetic analysis and postanalysis or large phylogenies. Bioinformatics 30: 1312–1313. DOI: 10.1093/bioinformatics/btu033

Standley PC. 1919. Studies in tropical American phanerogams. No . 3. Contributions of the U.S. National Herbarium 20: 173–220.

Su HJ, Hu JM, Anderson FE, Der P, Nickrent DL. 2015. Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. Taxon 64: 491–506. DOI: 10.12705/643.2

Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. DOI: 10.1007/BF00037152

Vidal-Russell R, Nickrent DL. 2007. A molecular phylogeny of the feathery mistletoe Misodendrum. Systematic Botany 32: 560–568. DOI: 10.1600/036364407782250643

Vidal-Russell R, Nickrent DL. 2008a. Evolutionary relationships in the showy mistletoe family (Loranthaceae). American Journal of Botany 95: 1015–1029. DOI: 10.3732/ajb.0800085

Vidal-Russell R, Nickrent DL. 2008b. The first mistletoes: origins of aerial parasitism in Santalales. Molecular Phylogenetics and Evolution 47: 523–537. DOI: 10.1016/j.ympev.2008.01.016

Wilson CA, Calvin CL. 2006. An origin of aerial branch parasitism in the mistletoe family, Loranthaceae. American Journal of Botany 93: 787–796. DOI: 10.3732/ajb.93.5.787

Zanjanchi P, Saeidi Mehrvarz S. 2015. The generic position of Loranthus grewingkii of Lorantheae (Loranthaceae) inferred from the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F sequences: a case study on Loranthus in Iran. WEBBIA: Journal of Plant Taxonomy and Geography 70: 199–206. DOI: 10.1080/00837792.2015.1064585




DOI: http://dx.doi.org/10.17129/botsci.1961

Refbacks

  • There are currently no refbacks.


ISSN: 2007-4476
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.