Temporary freshwater wetlands floristics in central Mexico highlands

Tatiana Lobato-de Magalhães, Mahinda Martínez


Background: Mexico has a high diversity of aquatic and subaquatic plants that occur between 1,000 and 2,500 m of elevation, although a larger proportion of aquatic plants is concentrated at lower altitudes. Temporary wetlands harbor close to 73 % of the aquatic species in Mexico. These systems are under a strong anthropogenic pressure and suffer constant degradation.

Questions: i) How many species grow in highland temporary wetlands? ii) Are they floristically similar? iii) Is there a latitudinal pattern of species richness?

Studied groups: Charophyta, Pteridophyta, Angiosperms.

Study site and years of study: Central Mexico (39 wetlands) from 2015 to 2016.

Methods: We collected in 39 temporary wetlands for two years. We made a presence/absence list of species per locality, and calculated floristic similarities and correlations between wetlands. We include data characterizing life form, plant use, and conservation status.

Results: We found 126 species belonging to 80 genera and 38 families. The richest families were Cyperaceae, Asteraceae, and Poaceae. As to genera, Eleocharis, Cyperus, and Juncus had more species. Species with the widest distributions were Persicaria mexicana, Marsilea mollis, Luziola fluitans, Heteranthera peduncularis, and Nymphoides fallax.  We found five different life forms – all herbaceous, including 27 threatened species, 24 species with economic use, 48 endemic species, and 19 cosmopolitan species. In addition, we found 20 species recorded for the first time in some states included in our study, and two species of Eleocharis that might represent undescribed species. The richest wetland harbors 40 species, the poorest has only five. Wetlands were comparable to each other in species composition, and species richness increases towards the south.

Conclusions: Temporary wetlands harbor a high floristic diversity and are similar to each other. Lower latitudes host higher numbers of species.


aquatic plants; floristic similarity; new species records

Full Text:



Aavik T, Holderegger R, Edwards PJ, Billeter R. 2013. Patterns of contemporary gene flow suggest low functional connectivity of grasslands in a fragmented agriculture landscape. Journal of Applied Ecology 50: 395-403. DOI: 10.1111/1365-2664.12053

Abraham G, Yadav RK, Kaushik GK. 2015. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf. Indian Journal of Experimental Biology 53(4): 232-235. DOI: 10.1111/j.1365-2672.2007.03701.x.

Alves TMDA, Ribeiro FL, Kloos H, Zani CL. 2001. Polygodial, the fungitoxic component from the Brazilian medicinal plant Polygonum punctatum. Memórias do Instituto Oswaldo Cruz 96(6): 831-833. DOI: 10.1590/S0074-02762001000600016

Angiosperm Phylogeny Group, APG. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 118: 1-20. DOI: 10.1046/j.1095-8339.2003.t01-1-00158.x

Arroyave MP. 2004. La lenteja de agua (Lemna minor L.): una planta acuática promisoria. Revista Esculea de Ingeniería de Antioquia 1: 33-38.

Balian EV, Segers H, Martens K, Lévéque C. 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627-637. DOI: 10.1007/s10750-007-9246-3

Bird MS, Day JA. 2014. Wetlands in changed landscape: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands. Plos one 9(2): DOI:10.1371/journal.pone.0088935

Bonilla-Jaime H, Guadarrama-Cruz G, Alarcon-Aguilar FJ, Limón-Morales O, Vazquez-Palacios G. 2015. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors. Journal of natural medicines 69(4), 463-470. DOI: 10.1007/s11418-015-0909-5

Calhoun AJ, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F. 2016. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation DOI: 10.1016/j.biocon.2016.11.024

Cariño-Cortés R, Hernández-Ceruelos A, Torres-Valencia JM, González-Avila M, Arriaga-Alba M, Madrigal-Bujaidar E. 2007. Antimutagenicity of Stevia pilosa and Stevia eupatoria evaluated with the Ames test. Toxicology in vitro 21(4): 691-697. DOI: 10.1016/j.tiv.2006.12.001

Chang CI, Kuo CC, Chang JY, Kuo YH. 2004. Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines. Journal of natural products 67(1): 91-93. DOI: 10.1021/np030267m

Cohen MJ, Creed IF, Alexander L, Basu NB, Calhoun AJ, Craft C, D’Amico E, DeKeyser E, Fowler L, Golden HE, Jawitz JW, Kalla P, Kirkman LK, Lane CR, Lang M, Leibowitz SG, Lewis DB, Marton J, MacLaughlin DL, Mushet DM, Raanan-Kiperwas H, Rains MC, Smith L, Walls SC. 2016. Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences 113(8): 1978-1986. DOI: 10.1073/pnas.1512650113

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO. 2017a. Geoportal. http://www.conabio.gob.mx/informacion/gis/ (accessed May 15, 2017).

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO. 2017b. Malezas de México. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm (accessed May 15, 2017).

Cuasquer E, Salvatierra D, Jimenez E, Boira H. 2016. La vegetación del humedal “Abras de mantequilla”. Composición florística. Bases para su restauración. Ciencia y Tecnología 9(1): 17-30.

Cui B, Zhang Z, Lei X. 2012. Implementation of diversified ecological networks to strengthen wetland conservation. Clean – Soil, Air, Water 40(10): 1015-1026. DOI: 10.1002/clen.201200026

Dar NA, Pandit AK, Ganai BA. 2014. Factors affecting the distribution patterns of aquatic macrophyte. Limnological Review 14(2): 75-81. DOI: 10.2478/limre-2014-0008

Davidson NC, 2013. How much wetlands has the world lost? Long-termand recent trends in global wetlands area. Marine and freshwater 65(10): 936-941. DOI:10.1071/MF14173

De-la-Lastra CA, Martin MJ, La-Casa C, Motilva V. 1994. Antiulcerogenicity of the flavonoid fraction from Bidens aurea: comparison with ranitidine and omeprazole. Journal of ethnopharmacology 42(3), 161-168. DOI: 10.1016/0378-8741(94)90081-7

Declaración de Cancún. 2002. Declaración de Cancún de países megadiversos afines. http://www.inecc.gob.mx/descargas/ai/con199328.pdf (accessed May 15, 2017).

Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S. 2006. Ecological characteristics of small farmland ponds: Associations with landuse practices at multiple spatial scales. Biological Conservation 131: 523-532. DOI: 10.1016/j.biocon.2006.02.024

Delgado G, Tejeda V, Salas A, Chávez MI, Guzmán S, Bolaños A, Aguilar ML, Navarro V, Villarreal ML. 1998. New Melampolides from Schkuhria schkuhrioides. Journal of natural products 61(9), 1082-1085. DOI: 10.1021/np970548s

Demirezer LO, Uzun M. 2016. Determination of sun protection factor (SPF) of Rumex crispus and main anthraquinones. Planta Medica 81(S 01), P334. DOI: 10.1055/s-0036-1596459

Di-Baccio D, Pietrini F, Bertolotto P, Pérez S, Barcelò D, Zacchini M, Donati E. 2017. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants. Science of The Total Environment 584, 363-373. DOI: 10.1016/j.scitotenv.2016.12.191

Dierberg FE, DeBusk TA, Jackson MJ, Chimeney MJ, Pietro K. 2002. Submerged aquatic vegetation-based treatment wetlands for removing phosphorous from agricultura runnof: response to hydraulic and nutrient loading. Water Research 36(6): 1409-1422. DOI: 10.1016/S0043-1354(01)00354-2

Ducks Unlimited de México, A.C, Dumac. 2017. Inventario y clasificación de humedales en México, Parte I. http://www.dumac.org/dumac/habitat/esp/publicaciones03.htm (accessed May 15, 2017).

Fisher J, Acreman MC. 2004. Wetland nutrient removal: a review of the evidence. Hydrology and Earth System Sciences 8(4): 673-685. DOI:10.5194/hess-8-673-2004

Friendly M. 2002. Corrgrams: Exploratory displays for correlation matrices. The American Statistician 56(4), 316-324. DOI: 10.1198/000313002533

Frohn RC, Reif M, Lane C, Autrey B. 2009. Satellite remote sensing of isolated wetlands using object-oriented. Wetlands 29(3): 931-941. DOI: 10.1672/08-194.1

Gallardo-Williams MT, Whalen VA, Benson RF, Martin DF. 2002. Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura). Journal of Environmental Science and Health, Part A 37(8), 1399-1408. DOI: 10.1081/ESE-120013265

García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME. 2005. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest management science 61(6): 612-618. DOI: 10.1002/ps.1028

González S. 2016. [Two new species of genus Eleocharis], personal communication.

Gür N, Türker OC, Böcük H. 2016. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment of aquatic ecosystems with boron pollution. Chemosphere 157, 1-9. DOI: 10.1016/j.chemosphere.2016.04.138

Ha NTH, Sakakibara M, Sano S. 2011. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresource technology 102(3), 2228-2234. DOI: 10.1016/j.biortech.2010.10.014

International Plant Name Index. 2017. www.ipni.org (accessed May 15, 2017).

International Union for Conservation of Nature, IUCN. 2017. Red List of threatened species. 2015. www.iucnredlist.org (accessed May 15, 2017).

Instituto Nacional de Estadistica y Geografia, INEGI. 2017. Atlas nacional Interactivo de México. http://www.inegi.org.mx/ (accessed May 15, 2017).

Ishiyama N, Akasaka T, Nakamura F. 2014. Mobility-dependent response of aquatic animal species richness to a wetland network in an agricultural landscape. Aquatic Sciences 76: 437-449. DOI: 10.1007/s00027-014-0345-8

Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Bulletin Société Sciences Naturelles, 44: 223-270. DOI: 10.5169/seals-268384

Kostel J. 2016. The wetlands initiative: the wetlands initiative is helping farmers install wetlands to naturally reduce nutrient runoff. How exactly do wetlands remove nutrients? http://www.wetlands-initiative.org/nutrient-removal/ (accessed May 15, 2017).

Krebs CJ. 1999. Ecological Methodology. 2 ed. Menlo Park, California: Benjamin Cummings.

Lacoul P, Fredman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14(2): 89-136. DOI: 10.1139/a06-001

Landgrave R, Moreno-Casasola P. 2012. Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4(1): 19-35.

Lee K, Shen CC, Lin CF, Li SY, Huang YL. 2012. A Phenolic Derivative and Two Diacetylenes from Symphyotrichum subulatum. Planta medica 78(16), 1780-1783. DOI: 10.1055/s-0032-1315372

Linares E, Bye RA. 1987. A study of four medicinal plant complexes of Mexico and adjacent United States. Journal of ethnopharmacology 19(2), 153-183. DOI: 10.1016/0378-8741(87)90039-0

Lot A. 1986. Acuáticas Vasculares. In: Lot A, Chiang F. Manual de herbario. México: Consejo nacional de la flora de México, 87-92.

Lot A. 2012. Las monocotiledóneas acuáticas y subacuáticas de México. Acta Botánica Mexicana 100: 135-148.

Lot A, Olvera M, Flores C, Díaz A. 2015. Guía ilustrada de Campo Plantas indicadoras de humedales. México: UNAM, 238 pp.

Lot A, Novelo A, Ramírez-García P. 1993. Diversity of mexican aquatic vascular plant flora. In: Ramamoorthy TP, Bye R, Lot A, Fa J. Biological diversity of México: origins and distribution. New York: Oxford University, 577-591.

Lot A, Ramos F, Ramírez-García P. 2002. Sagittaria demersa (Alismataceae) en la Sierra Tarahumara, México. Anales del Instituto de Biología - Serie Botánica 73(1): 95-97.

Lot A, Lemos RM, Chiang F. 2013. Plantas acuáticas mexicanas: una contribución a la Flora de México. México: Universidad Autónoma de México, Vol I. 399 p.

Lu Y, Xu XL, Zhang DY, Zhu XN, Feng F, Zhou QJ, Xie P. 2014. Correlations between aquatic plant diversity and water environmental in the typical sites of Hangzhou section of the Beijing-Hangzhou Grand Canal. Huan jing ke xue 35(5):1708-1717.

Magalhaes TL, Bortoluzzi RLC, Mantovani A. 2016. Plant distribution in freshwater wetlands of the Brazilian subtropical highland grasslands. Brazilian Journal of Botany 39(1): 239-249. DOI: 10.1007/s40415-015-0226-y

Martínez M, García A. 2001. Flora y vegetación acuática de localidades selectas del estado de Querétaro. Acta Botanica Mexicana 54: 1-23. 10.21829/abm54.2001.864

Martínez M, Vargas O, Rodríguez A, Chiang F, Ocegueda S. 2017. Solanaceae family in Mexico. Botanical Sciences 95:131-145. DOI: 10.17129/botsci.658

Marton JM, Creed IF, Lewis DB, Lane CR, Basu NB, Cohen MJ, Craft CB. 2015. Geographically isolated wetlands are important biogeochemical reactors on the landscape. BioScience DOI: 10.1093/biosci/biv009

Mauerhofer V, Kim RE, Stevens C. 2015. When implementation works: A comparison of Ramsar Convention implementation in different continents. Environmental Science and Policy 51: 95-105. DOI: 10.1016/j.envsci.2015.03.016

Medline 2017 https://www.nlm.nih.gov/bsd/pmresources.html (accessed May 15, 2017).

Mickel JT, Smith AR. 2004. The Pteridophytes of Mexico. Bronx, New York: Memoirs of the New York Botanical Garden, Vol. 88.

Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T, Mouradov A. 2016. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnology for biofuels 9(1), DOI 10.1186/s13068-016-0628-5.

Mora-Olivo A, Villaseñor JL, Martínez M. 2013. Las plantas vasculares acuáticas estrictas y su conservación en México. Acta Botánica Mexicana 103: 27-63. DOI: 10.21829/abm103.2013.50

Murray-Hudson M, Lane CR, North S, Brown MT. 2012. Macrophyte Species Distribution, Indices of Biotic Integrity and Sampling Intensity in Isolated Florida Marshes. Wetlands 32(3): 449-460. DOI: 10.1007/s13157-012-0278-8

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858. DOI:10.1038/35002501

Olajuyigbe O, Ashafa A. 2014. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa. Iranian journal of pharmaceutical research: IJPR 13(4), 1417-1423.

Olmos-Márquez MA, Alarcón-Herrera MT, Martín-Domínguez IR. 2012. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research 19(3), 763-771. DOI: 10.1007/s11356-011-0598-x

Ot’ahelóvá H, Valachovic’ M, Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica Ecology and Management of Inland Waters 37(4): 290-302. DOI: 10.1016/j.limno.2007.07.003

Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 450: 418-422. DOI: 10.1038/nature20584

Pollock MM, Naiman RJ, Hanley TA. 1998. Plant species richness in riparian wetlands: a test of biodiversity theory. Ecology 79(1): 94-105. DOI: 10.1890/0012-9658(1998)079[0094:PSRIRW]2.0.CO;2

Pott VJ, Pott A. 2000. Plantas aquáticas do Pantanal. Brasília: Embrapa.

Medline. 2017. Pubmed. https://www.ncbi.nlm.nih.gov/pubmed/ (accessed January 28, 2017).

R Development Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (accessed January 28, 2017).

Rai PK. 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetlands plants: an ecosustainable approach. International Journal of Phytoremediation 10(2): 131-158. DOI: 10.1080/15226510801913918

Rico-Romero SER. 2015. Relación entre las algas y plantas acuáticas en cuerpos de agua de Querétaro y Guanajuato. Unpubl. BSc Thesis, Autonomous University of Queretaro.

Rocha DC, Martins D. 2011. Adaptações morfoanatômicas de Cyperaceae ao ambiente aquático. Planta Daninha 29:7-15. DOI: 10.1590/S0100-83582011000100002

Rolon AS, Homem HF, Maltchik L. 2010. Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil. Acta Limnologica Brasileira 22:133-146. DOI: 10.4322/actalb.02202003

Rzedowski J. 1978. Vegetación de México. Ciudad de México: Instituto Politécnico Nacional, 432 p.

Rzedowski JR, Rzedowski GC (Eds.). 2017. Flora del Bajío y Regiones Adyacentes.

http://www1.inecol.edu.mx/publicaciones/FLOBA.htm (accessed May 15, 2017).

Secretaría de Medio Ambiente y Recursos Naturales, Semarnat. Norma Oficial Mexicana 059. 2010. Diario Oficial de 30 de diciembre de 2010.

Smith AR, Pryer KM, Schuettpelz E, Korall P, Schineider H, Wolf PG. 2006. A classification for extant ferns. Táxon 55(3): 705-731. DOI: 10.2307/25065646

Sohn SH, Yun BS, Kim SY, Choi WS, Jeon HS, Yoo JS, Kim SK. 2013. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages. Natural product research 27(11), 1037-1040. DOI: 10.1080/14786419.2012.686906

Tropicos http://www.tropicos.org/ (accessed May 15, 2017).

Tsuji K, Asayama T, Shiraki N, Inoue S, Okuda E, Hayashi C, Nishida K. Hasegawa H, Harada E. 2017. Mn accumulation in a submerged plant Egeria densa (Hydrocharitaceae) is mediated by epiphytic bacteria. Plant, Cell & Environment. DOI: 10.1111/pce.12910

Uden DR, Hellman ML, Angeler DG, Allen CR. 2014. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands. Ecological Applications 24(7): 1569-1582. DOI: 10.1890/13-1755.1

www.gbif.org (accessed May 15, 2017).

Villaseñor JL, Ortiz E. 2014. Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad 85: 134-142. DOI: 10.7550/rmb.31987

Zedler JB, Kercher S. 2005. Wetland resources: status, trends, ecosystems services, and restorability. Annual Review of Environmental Resources 30: 39–74. DOI: 10.1146/annurev.energy.30.050504.144248

DOI: http://dx.doi.org/10.17129/botsci.1532


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


contador de visitas