Evolution, growth and phenology of Phalaris minor biotypes resistant to ACCase-inhibiting herbicides in Mexico

Jesús Rubén Torres-García, Obdulia Segura-León, Ebandro Uscanga-Mortera, Carlos Trejo, Víctor Conde-Martínez, Josué Kohashi-Shibata, David Martínez-Moreno

Abstract


Background: Herbicide application to control weeds can promote a rapid selection of resistant phenotypes in small geographic areas. Also, in areas with a spatial heterogeneous management, resistance may evolve independently, promoting local adaptation in weeds. In the Mexican region known as “El Bajio,” 100,000 ha are cultivated with wheat, and the weed  Phalaris minor, resistant to ACCase-inhibiting herbicides is present common.

Question: We aim to identify the population structure of two genes in four different P. minor biotypes from “El Bajio” and to determine their association with phenology and plant growth differences (biomass and seed yield) that may contribute to survival in the agricultural environment.

Studied species: Phalaris minor Retz.

Study site and years of study:

Methods: The diversity of the psbA gene and the sequence of two ACCase gene fragments as well as phenology, growth and biomass allocation were evaluated.

Results: Results indicated different polymorphism levels for the two genes. There were no differences in the psbA gene between biotypes, although the ACCase gene exhibited high polymorphism level. In addition, each biotype showed differences in phenology, biomass accumulation and fecundity.

Conclusions: The ACCase-inhibiting herbicide resistance in “El Bajio” region might be a resistance hotspot leading to the local adaptation of weeds.


Keywords


Evolution; herbicide resistance; local adaptation

Full Text:

PDF

References


Afentouli CG, Eleftherohorinos IG. 1996. Littleseed Canarygrass (Phalaris minor) and Short-spiked Canarygrass (Phalaris brachystachys) Interference in Wheat and Barley. Weed Science. 44: 560-565. http://www.jstor.org/stable/4045635

Baker HG. 1974. The evolution of weeds. Annual Review of Ecology and Systematics. 5: 1-24. DOI: 10.1146/annurev.es.05.110174.000245

Baucom RS, Holt JS. 2009. Weeds of agricultural importance: bridging the gap between evolutionary ecology and crop and weed science. New Phytologist 184: 741-743. DOI: 10.1111/j.1469-8137.2009.03077.x

Cochran WG, Cox GM. 1990. Experimental designs. John Willey and Sons USA.

Délye C, Michel S, Bérard A, Chauvel B, Brunel D, Guillemin JP, Dessaint F, Le Corre V. 2010. Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass). New Phytologist. 186: 1005–1017. DOI: 10.1111/j.1469-8137.2010.03233.x

Délye C. 2005. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Science 53: 728-746. https://doi.org/10.1614/WS-04-203R.1

Délye C, Michel S. 2005. ‘Universal’ primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Research 45: 323–330. DOI: 10.1111/j.1365-3180.2005.00467.x

Délye C, Straub C, Michel S, Le Corre V. 2004. Nucleotide Variability at the Acetyl Coenzyme A Carboxylase Gene and the Signature of Herbicide Selection in the Grass Weed Alopecurus myosuroides (Huds.) Molecular Biology and Evolution 21: 884–892. DOI:

https://doi.org/10.1093/molbev/msh095

Duke SO. 1985. Effects of herbicides on nonphotosynthetic process. In Duke SO, ed. Weed Physiology Vol II Herbicide Physiology. Boca Raton, FL: CRC Press, 91-112.

Forcella F. and Banken K.R. 1996. Relationships among Green Foxtail (Setaria viridis) seedling development, growing degree days, and time of nicosulfuron application. Weed Technology 10: 60-67. http://www.jstor.org/stable/3987782

García-Franco JL, Uscanga-Mortera E, Kohashi-Shibata J, García-Esteva A, Yáñez-Jiménez P, Ortega-Escobar HM. 2014. Caracterización morfológica de biotipos de Phalaris minor resistentes y susceptible a herbicidas inhibidores de la ACCasa. Botanical Sciences 92: 169-176.

Grime JP. 1979. Plant strategies and vegetation processes. Chichester, UK: Wiley.

Heap I.M. 2016 International survey of herbicide-resistant weeds. http://www.weedscience.org (accessed 2 August 2016.

Hunt R. 1978. Plant growth analysis. London, UK: Ed. Edward Arnold..

Kaundun SS. 2014. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. Pest Management Science 70: 1405-1417. DOI: 10.1002/ps.3790

Kawecki TJ. 2008. Adaptation to Marginal Habitats. Annual Review of Ecology and Systematics 39: 321-342. DOI: 10.1146/annurev.ecolsys.38.091206.095622

Maxwell BD, Roush ML, Radosevich SR. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technology 4: 2-13. http://www.jstor.org/stable/3986835

Mortimer AM. 1997. Phenological adaptation in weeds-an evolutionary response to the use of herbicides? Pest Management Science 51: 299–304. DOI: 10.1002/(SICI)1096-9063(199711)51:3<299::AID-PS653>3.0.CO;2-I

Owen MJ, Michael PJ, Renton M, Steadman KJ, Powles SB. 2011. Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed Research 51: 133–141. DOI: 10.1111/j.1365-3180.2010.00835.x

Powles SB, Yu Q. 2010. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology 61: 317-347. DOI: 10.1146/annurev-arplant-042809-112119

Stewart Jr CN, Via LE. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748-749.

Tafoya JA, Morgado J. 2000. Resistencia de la maleza a la aplicación de herbicidas. Revista Mexicana de la Ciencia de la Maleza. Número especial. Universidad Autónoma Chapingo, 46: 1-9.

Tal A, Kotoula-Syka E, Rubin B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protection 19: 467-472. http://dx.doi.org/10.1016/S0261-2194(00)00041-7

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology Evolution 30: 2725-2729.

DOI: https://doi.org/10.1093/molbev/mst197

Torres-García JR, Núñez-Farfán J., Uscanga-Mortera E., Kohashi-Shibata, J., Trejo C, Conde-Martínez V, Martínez-Moreno D, Velazquéz-Marquez S. 2015. Competition for light between biotypes of littleseed canarygrass (Phalaris minor) that are susceptible and resistant to ACCase inhibitors. Nordic Journal of Botany 33: 615-623. DOI: 10.1111/njb.00764

Torres-García JR, Uscanga-Mortera E, Kohashi-Shibata J, Trejo C, Conde-Martínez V, Núñez-Farfán J, Martínez-Moreno D. 2015. Effect of herbicide resistance on the seed physiology of Phalaris minor (littleseed canarygrass). Botanical Sciences 3: 661-667. DOI: http://dx.doi.org/10.17129/botsci.81

Weinig C. 2005. Rapid evolutionary responses to selection in heterogeneous environments among agricultural and nonagricultural weeds. International Journal of Plant Sciences 166, 641-647. http://www.journals.uchicago.edu/doi/abs/10.1086/429853




DOI: http://dx.doi.org/10.17129/botsci.1338

Refbacks

  • There are currently no refbacks.


ISSN: 2007-4476
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.