Nutrient mobilization, growth and field survival of Pinus pringlei inoculated with three ectomycorrhizal mushrooms

Araceli López-Gutiérrez, Jesus Perez-Moreno, Faustino Hernández-Santiago, Ebandro Uscanga-Mortera, Antonio García-Esteva, Victor Manuel Cetina-Alcalá, María del Rosario Cardoso-Villanueva, Beatriz Xoconostle-Cázares


Background. All of the Pinaceae require the ectomycorrhizal interaction to survive under field conditions. However, their use has not traditionally been considered in the production of forest plants in Neotropical areas.

Hypothesis. There will be an increase in plant quality in greenhouse and in survival in the field of Pinus pringlei inoculated with ectomycorrhizal fungi (ECMF).

Site of study. The experiment was carried out in Texcoco, Mexico, in two sites: i) greenhouse of the Colegio de Postgraduados; and ii) in the field, in the San Pablo Ixayoc town.

Methods. P. pringlei plants, a native species of Mexico, were inoculated with the ECMF: i) Hebeloma alpinum (Ha); ii) Laccaria trichodermophora (Lt); and iii) Thelephora terrestris (Tt). The effect of this inoculation on plant growth and nutritient translocation was evaluated. A morphological and molecular characterization of ectomycorrhizal roots and an evaluation of the seedling field survival were carried out, and compared with non-inoculated plants.

Results. Pinus pringlei plants inoculated with ECMF increased their growth and nutrient content. A significant nutritional allocation from root to stem mainly of K, Fe, and Zn was recorded.

The morpho-anatomical and molecular characterization showed the presence of Ha, Lt and Tt in ectomycorrhizal roots. Two-year old plants mainly inoculated with Ha and Tt showed higher survival in the field than non-inoculated plants.

Conclusions. The beneficial effects of ECMF on P. pringlei growth, nutrimental translocation (mainly on K, Fe and Zn), and field survival rates are reported for the first time.


Ectomycorrhizal interaction; reforestation; Potassium; Iron; Zinc


Adams E, Shin R. 2014. Transport, signaling and homeostasis of potassium and sodium in plants. Journal of Integrative Plant Biology 56: 231-249. DOI: 10.1111/jipb.12159

Agerer R. 2001. Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial system according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11: 107-114.

Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycological Progress 5: 56-107. DOI: 10.1007/s11557-006-0505-x

Aggangan SN, Moon HK, Han SH. 2013. Growth and nutrient accumulation of Eucalyptus pellita F. Muell. in response to inoculation with edible ectomycorrhizal mushrooms. Asia Life Sciences 22: 95-112.

Allen SE, Grimshaw HM, Parkinson JA, Quarmbym E. 1997. Chemical Analysis of Ecological Materials. Oxford: Blackwell Science.

Armengaud P, Breitling R, Amtmann A. 2004. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology 136: 2556-2576. DOI: 10.1104/ pp.104.046482

Barker VA, Pilbeam DJ. 2015. Handbook of Plant Nutrition. Boca Raton, FL: CRC Press.

Barroetaveña CV, Bassani N, Rajchenberg M. 2012. Inoculación micorrícica de Pinus ponderosa en la Patagonia Argentina: colonización de las raíces, descripción de morfotipos y crecimiento de las plántulas en vivero. Bosque 33: 163-169. DOI: 10.4067/S0717-92002012000200006

Bending GD, Read DJ. 1995. The structure and function of vegetative mycelium of ectomycorrhizal plants. New Phytology 130: 401-409. DOI: 10.1111/j.1469-8137.1995.tb01834.x

Bolchi A, Ruotolo R, Marchini G, Vurro E, di Toppi LS, Kohler A, Tisserant E, Martin F, Ottonello S. 2011. Genome-wide inventory of metal homeostasis-related gene a functional phytochelatin synthase in the hypogeous mycorrhizal fungus Tuber melanosporum. Fungal Genetics and Biology 48: 573-584. DOI: 10.1016/j.fgb.2010.11.003

Bremner JM. 1965. Total nitrogen. In: Black CA, ed. Methods of Soil Analysis. Part 2. Agronomy. Madison, Wisconsin: American Society of Agronomy, 1149-1178.

Browning HRM, Whitney RD. 1991. Responses of Jack pine and black spruce seedlings to inoculation with selected species of ectomycorrhizal fungi. Canadian Journal of Forest Research 21: 701-706. DOI: 10.1139/x91-096

Brownlee C, Duddrige JA, Malibari A, Read DJ. 1983. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant and Soil 71: 433-443.

Bücking H, Heyser W. 1994. The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant and Soil 167: 203-212. DOI: 10.1007/BF00007946

Cairney JWG. 2005. Basidiomycetes mycelia in forest soil: dimensions, dynamics and roles in nutrient distribution. Mycological Research 109: 7-20. DOI: 10.1017/S0953756204001753

Cairney JWG, Chamber SM. 2013. Ectomycorrhizal Fungi: Key Genera in Profile. Berlín, Heidelberg: Springer Science & Business Media.

Carrasco-Hernández V, Pérez-Moreno J, Espinosa-Hernández V, Almaraz-Suárez JJ, Quintero-Lizaola R, Torres-Aquino M. 2011. Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales. Revista Chilena de Historia Natural 84: 83-96. DOI: 10.4067/S0716-078X2011000100006

Carrasco-Hernández V, Pérez-Moreno J, Quintero-Lizaola R, Espinosa-Solares T, Lorenzana-Fernández A, Espinosa-Hernández C. 2015. Edible species of the fungal genus Hebeloma and two Neotropical pines. Pakistan Journal of Botany 47: 319-326.

CONAFOR (Comisión Nacional Forestal). 2014. Monitoreo de restauración forestal y reconversión productive 2014. (accessed April 29, 2017).

Comandini O, Rinaldi AC, Kuyper TW. 2012. Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Pagano M, ed. Mycorrhiza: Occurrence in Natural and Restored. New York, EUA: Nova Science Publishers Inc., 165-200.

Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H. 2007. Molecular and functional characterization of a Na+ -K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. Journal of Biological Chemistry 282: 26057-26066. DOI: 10.1093/jac/dkq195

Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H. 2010. Potassium and sodium transport in non- animal cells: the Trk/Ktr/HKT transporter family. Cellular and Molecular Life Sciences 67: 2511-2532. DOI: 10.1007/s00018-010-0317-7

DEEMY. 2017. An Information System for Characterization and Determination of Ectomycorrhizae. (accessed June 12, 2016).

Dickson A, Leaf AL, Hosner JF. 1960. Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle 36: 10-13. DOI: 10.5558/tfc36010-1

Duddridge JA, Malibaru A, Read DJ. 1980. Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834-836. DOI: 10.1038/287834a0

FAO. 2010. Evaluación de los recursos forestales mundiales. Informe principal. Estudio FAO: Montes. Roma. <> (accessed April 2, 2016).

FAO. 2016. Evaluación de los recursos forestales mundiales 2015 ¿Cómo están cambiando los bosques del mundo? (accessed May 21, 2016).

Farjon A. 2013. Pinus pringlei. The IUCN Red list of threatened species. (accessed April 7, 2016). DOI: 10.2305/IUCN.UK.2013-1.RLTS.T42403A2977612.en

Franco AR, Sousa NR, Ramos MA, Oliveira RS, Castro PMI. 2014. Diversity and Persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a Post-fire plantation in Northern Portugal. Microbial Ecology 68: 761-772. DOI: 10.1007/s00248-014-0447-9

Frey B, Zierold K, Brunner I. 2000. Extracellular complexation of Cd in the Hartig net and cytosolic Zn sequestration in the fungal mantle of Picea abies-Hebeloma crustuliniforme ecctomycorrhizas. Plant, Cell and Environment 23: 1257-1265. DOI: 10.1046/j.1365-3040.2000.00637.x

Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann SD. 2014. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K+ and P in the host plant. New Phytologist 201: 951-960. DOI: 10.1111/nph.12603

Garcia K, Zimmermann SD. 2014. The role of mycorrhizal associations in plant potassium nutrition. Frontiers in Plant Science 5: 1-9. DOI: 10.3389/fpls.2014.00337

Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. 2016. Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science 21: 937-950. DOI: 10.1016/j.tplants.2016.07.010

Gernandt DS, Pérez-de la Rosa JA. 2014. Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad 85: 126-133. DOI: 10.7550/rmb.32195

Gómez-Romero M, Villegas J, Sáenz-Romero C, Linding-Cisneros R. 2013. Efecto de la micorrización en el establecimiento de Pinus pseudostrobus en cárcavas. Madera y bosque 19:51-63. DOI: 10.21829/myb.2013.193327

Hilszczanska D, Malecka M, Sierota Z. 2008. Changes in nitrogen level and mycorrhizal structure Scots pine seedlings inoculated with Thelephora terrestris. Annals of Forest Science 65: 409p-409p6. DOI: 10.1051/forest:2008020

Hobbie EA. 2006. Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563-569. DOI: 10.1890/05-0755

Horton TR, Bruns TD. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 1855-1871. DOI: 10.1046/j.0962-1083.2001.01333.x

Itoo ZA, Reshi ZA. 2013. The multifunctional role of ectomycorrhizal associations in forest ecosystem processes. The Botanical Review 79: 371-400. DOI: 10.1007/s12229-013-9126-7

Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL. 2001. Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytology 149: 327-338. DOI: 10.1046/j.1469-8137.2001.00014.x

Jones JB, Wolf B, Mills HA. 1991. Plant analysis handbook. Athens, Georgia: Micro- Macro Publishing.

Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O. 2001. Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93: 353-364. DOI: 10.1034/j.1600-0706.2001.930301.x

Karst J, Jones MD, Turkington R. 2009. Ectomycorrhizal colonization and intraspecific variation in growth responses of lodgepole pine. Plant Ecology 200: 161-165. DOI: 10.1007/s11258-008-9443-9

Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F. 1998. Xerocomus badius-Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7: 267-275. DOI: 10.1007/s005720050191.

Lehto T, Zwiazek J. 2011. Ectomycorrhizas and water relations of trees. Mycorrhiza 21:71-90. DOI: 10.1007/s00572-010-0348-9

Leonhardt T, Sácky J, Simek P, Santrucek J, Kotrba P. 2014. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 5: 1693-1701. DOI: 10.1039/c4mt00141

Leyval C, Reid CPP. 1991. Utilization of microbial siderophores by mycorrhizal and non-mycorrhizal pine roots. The New Phytologist 119: 93-98. DOI: 10.1111/j.1469-8137.1991.tb01011.x

López-Upton J, Velazco-Fiscal V, Jasso-Mata J, Ramírez-Herrera C, Vargas-Hernández J. 2001. Hibridación natural entre Pinus oocarpa y P. pringlei. Acta Botánica Mexicana 57: 51-66.

MacAdam JW. 2009. Structure and Function of Plants. Iowa, USA: Wiley-Blackwell. DOI: 10.1093/aob/mcp233

Marschner H. 2012. Marschner's Mineral Nutrition in Higher Plants. San Diego: Academic Press INC.

Martineau E, Domec JC, Bosc A, Denoroy P, Asensio FV, Lavres J, Jordan-Meille L. 2017. The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environmental and Experimental Botany 134: 62-71. DOI: 10.1016/j.envexpbot.2016.11.004

Martínez-Reyes M, Pérez-Moreno J, Villarreal-Ruiz L, Ferrera-Cerrato R, Xoconostle-Cázares B, Vargas-Hernández JJ, Honrubia-García M. 2012. Crecimiento y contenido nutrimental de Pinus greggii Engelm. inoculado con el hongo comestible ectomicorrízico Hebeloma mesophaeum (Pers.) Quél. Revista Chapingo Serie Ciencias Forestales y del Ambiente 18: 183-192. DOI: 10.5154/r.rchscfa.2010.11.112

Marx DH, Ruehle JL, Cardell CE. 1994. Methods for studying nursery and field response of trees to specific ectomycorrhiza. In: Noris JR, Read DJ, Varma AK, eds. Techniques for Mycorrhizal Research, Methods in Microbiology. London, U K: Academic Press, 383-411.

Méndez-Neri M, Pérez-Moreno J, Quintero-Lizaola R, Hernández-Acosta E, Lara-Herrera A. 2011. Crecimiento y contenido nutrimental de Pinus greggii inoculado con tres hongos comestibles ectomicorrízicos. Terra Latinoamericana 29: 73-81.

Mohan V, Natarajan K, Ingleby K. 1993. Anatomical studies on ectomycorrhizas I. The ectomycorrhizas produced by Telephora terrestris on Pinus patula. Mycorrhiza 3: 39-42.

Montoya A, Kong A, Garibay-Orijel R, Méndez-Espinoza C, Rodham ET, Estrada-Torres A. 2014. Availability of wild edible fungi in La Malinche National Park, México. Journal of Mycology 1: 1-15. DOI: 10.1155/2014/241806

Mortimer PE, Karunarathna SC, Li Q, Gui H, Yang X, Yang X, He J, Ye L, Guo J, Li H, Sysouphanthong P, Zhou D, Xu J, Hyde KD. 2012. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Diversity 56: 31-47. DOI: 10.1007/s13225-012-0196-3

Obase K, Tamai Y, Yajima T, Miyamoto T. 2007. Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17: 209-2015. DOI: 10.1007/s00572-006-0097-y

Obase K, Cha JY, Lee JK, Lee SY, Chun KW. 2012. Ectomycorrhizal fungal community associated with naturally regenerating Pinus densiflora Sieb. et Zucc. Seedlings on exposed granite slopes along woodland paths. Journal of Forest Research 17: 388-392. DOI: 10.1007/s10310-011-0301-6

Orozco-Gutiérrez G, Muños-Flores HJ, Rueda-Sánchez A, Sígala-Rodríguez JA, Prieto-Ruiz JA, García-Magaña JJ. 2010. Diagnóstico de la calidad de planta en los viveros forestales del estado de Colima. Folleto Técnico Núm.1. Campo experimental Uruapan, Michoacán, México: SAGARPA. INIFAP. CIRPAC.

Parladé J, Pera J, Alvarez FI. 1996. Inoculation of containerized Pseudotsuga menziesii and Pinus pinaster seedlings with spores of five species of ectomycorrhizal fungi. Mycorrhiza 6: 237-245. DOI: 10.1007/s005720050131

Parladé J, Luque J. Pera J, Rincón A. 2004. Field performance of Pinus pinea and P. halepensis seedlings inoculated with Rhizopogon spp. and outplanted in formerly arable land. Annals of Forest Science 61: 507-514. DOI: 10.1051/forest:2004045

Perea-Estrada VM, Pérez-Moreno J, Villarreal-Ruiz L, Trinidad-Santos A, De la I-de Bauer ML, Cetina-Alcalá VM, Tijerina-Chávez L. 2009. Humedad edáfica, nitrógeno y hongos ectomicorrízicos comestibles en el crecimiento de pino. Revista Fitotecnia Mexicana 32: 93-102.

Pérez-Moreno J, Read JD. 2004. Los hongos ectomicorrízicos, lazos vivientes que conectan y nutren a los árboles en la naturaleza. Interciencia 29: 239-247.

Pérez-Moreno J, Loezana AF, Carrasco-Hernández V, Yescas-Pérez A. 2010. Los Hongos Comestibles Silvestres del Parque Nacional Izta-Popo, Zoquiapan y Anexos. Montecillo, Texcoco, Estado de México: Colegio de Postgraduados, SEMARNAT, CONACyT.

Pérez-Moreno J, Martínez-Reyes M. 2014. Edible ectomycorrhizal mushrooms: biofactories for sustainable development. In: Guevara-Gonzalez R, Torres-Pacheco I, eds. Biosystems Engineering: Biofactories for Food Production in the Century XXI, Switzerland: Springer International Publishing, 151-233.

Rentería-Chávez MC, Pérez-Moreno J, Cetina-Alcalá VM, Ferrera-Cerrato R, Xoconostle-Cázares B. 2017. Transferencia de nutrientes y crecimiento de Pinus greggii Engelm. inoculado con hongos comestibles ectomicorrízicos en dos sustratos. Revista Argentina de Microbiología 49: 93-104. DOI: 10.1016/j.ram.2016.06.004

Rincón A, Alvarez FI, Pera J. 2001. Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza 11:265-271. DOI: 10.1007/s005720100127

Rincón A, de Felipe MR, Fernández-Pascual M. 2007. Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18: 23-32. DOI: 10.1007/s00572-007-0149-y

Rineau F, Courty PE, Uroz S, Buée M, Garbaye J. 2008. Simple microplate assays to measure iron mobilization and oxalate secretion by ectomicorrhizal tree roots. Soil Biology and Biochemistry 40: 2460-2463. DOI: 10.1016/j.soilbio.2008.03.012

Sácky J, Leonhardt T, Borovicka J, Gryndler M, Briksí A, Kotrba P. 2014. Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genetics and Biology 67: 3-14. DOI: 10.1016/j.fgb.2014.03.003

Sácky J, Leonhardt T, Kotrba P. 2016. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 29: 349-363. DOI: 10.1007/s10534-016-9920-x

Sáenz-Romero C. 2003. Alternatives for improving reforestation in México. XII Congreso Forestal Mundial, Québec, Canadá. Texto publicado por la FAO. (accessed April 28, 2017).

Sánchez-González A. 2008. Una visión actual de la diversidad y distribución de los pinos de México. Madera y Bosques 14: 107-120.

Sanchez-Zabala J, Majada J, Martín-Rodriguez N, González-Murua C, Ortega U, Alonso-Graña M, Arana O, Duñabeitia MK. 2013. Physiological aspects underlying the improved out planting performance of Pinus pinaster Ait. seedlings associated with ectomycorrhizal inoculation. Mycorrhiza 23: 627-640. DOI: 10.1007/s00572-013-0500-4

Siddiqui ZA. Kataoka R. 2011. Mycorrhizal inoculants: progress in inoculant production technology. In: Ahmad I, Ahmad F, Pichtel J, eds. Microbes and Microbial Technology: Agricultural and Environmental Applications. New York: Springer, 489-506.

Sillampää M. 1983. Micronutrients and the nutrient status in soils: a global study. Rome: FAO.

Simard WS, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. 2012. Mycorrhizal networks: Mechanism, ecology and modelling. Fungal Biology Reviews 26: 39-60. DOI: 10.1016/j.fbr.2012.01.001

Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. New York, NY: Elsevier press.

Sotomayor-Castellanos JR, Ramirez-Pérez M. 2014. Anisotropía del módulo de elasticidad y resistencia en compresión de la madera de Pinus michoacana, Pinus douglasiana y Pinus pringlei. Acta Universitaria 24: 3-12. DOI:

Sousa NR, Franco AR, Oliveira RS, Castro PM. 2012. Ectomycorrhiza fungi as an alternative to the use of chemical fertilizer in nursery production of Pinus pinaster. Journal of Environmental Management 95: 269-274. DOI: 10.1016/j.jenvman.2010.07.016

Steinfeld D, Amaranthus MP, Cazares E. 2003. Survival of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) seedlings out planted with Rhizopogon mycorrhizae inoculated with spores at the nursery. Journal of Arboriculture 29: 197-207.

Sudhakara-Reddy M, Natarajan K. 1997. Coinoculation efficacy of ectomycorrhizal fungi on Pinus patula seedling in nursery. Mycorrhiza 7: 133-138. DOI: 10.1007/s005720050173

Trocha LK, Oleksyn J, Turzanska E, Rudawska M, Reich PB. 2007. Living on the edge: Ecology of an incipient Betula-fungal community growing on brick walls. Trees 21: 239-247. DOI: 10.1007/s00468-006-0116-9

Turjaman M, Santoso E, Susanto A, Gaman S, Limin SH, Tamai Y, Osaki M, Tawaraya K. 2011. Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forest. Wetlands Ecology and Management 19: 331-339. DOI: 10.1007/s11273-011-9219-1

Van Hees PAW, Rosling A, Essén A, Godbold LD, Jones LD, Finlay DR. 2006. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytologist 169: 367-377. DOI: 10.1111/j.1469-8137.2005.01600.x

Villar SP. 2017. Importancia de la calidad de planta en los proyectos de revegetación. In: Rey-Benayas JM, Espigares PT, Nicolau IJM, eds. Restauración de Ecosistemas Mediterráneos. Alcalá de Henares: Universidad de Alcalá. Asociación Española de Ecología Terrestre, 65-83.

Villaseñor JL, Ortíz E, Alvarado L, Mora M, Segura G. 2013. Catálogo florístico taxonómico de los árboles de México. (accessed February 21, 2018).

Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J. 2003. Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiology Ecology 44: 57-65. DOI: 10.1111/j.1574-6941.2003.tb01090.x

Wallander H, Pallon J. 2005. Temporal changes in the elemental composition of Rhizopogon rhizomorphs during colonization of patches with fresh organic matter or acid-washed sand. Mycologia 97: 295-303.

Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB. 2016. Extraction of natural antioxidants from Thelephora ganbajun mushroom by an ultrasound-assisted extraction technique and evaluation of antiproliferative activity of the extract against human cancer cells. International Journal of Molecular Sciences 17:1-15. DOI: 10.3390/ijms17101664

Yun W, Hall IR. 2004. Edible ectomycorrhizal mushrooms: challenges and achievements. Canadian Journal of Botany 82:1063-1073. DOI: 10.1139/b04-051

Zong K, Huang J, Nara K, Chen Y, Shen Z, Lian C. 2015. Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedling in a copper mine tailing. Journal of Forest Research 20: 493-500. DOI: 10.1007/s10310-015-0506-1



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


contador de visitas